Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Nägele, Marco"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Compact harmonic cavity optical parametric oscillator for optical parametric amplifier seeding
    (2020) Nägele, Marco; Steinle, Tobias; Mörz, Florian; Linnenbank, Heiko; Steinmann, Andy; Giessen, Harald
    We present a broadly tunable highly efficient frequency conversion scheme, based on a low-threshold harmonic cavity optical parametric oscillator (OPO) followed by an idler-seeded power amplifier. By choosing the cavity length of the OPO equal to the 10th harmonic of its 41 MHz Yb:KGW solid-state pump laser, a very compact optical setup is achieved. A singly-resonant cavity without output coupler results in a low oscillation threshold of only 28-100 mW in the entire signal tuning range of 1.37-1.8 µm. The 2.4-4.15 µm idler radiation is coupled out at the 41 MHz pump frequency and employed to seed a post amplifier with nearly Watt-level output power. In addition, the seeder plus power amplifier concept results in clean signal and idler pulses at the fundamental repetition rate of 41 MHz with a time-bandwidth product below 0.4 and a relative intensity noise 10 dB lower compared to the solid-state pump laser.
  • Thumbnail Image
    ItemOpen Access
    Development of a passively Q-switched microchip laser operating at 914 nm for automotive lidar applications
    (2022) Nägele, Marco; Dekorsy, Thomas (Prof. Dr. rer. nat.)
    Die meisten Festkörperlaser besitzen Emissionswellenlängen oberhalb eines Mikrometers und können deshalb nicht für moderne Lidarsysteme in Kombination mit günstiger und weit etablierter siliziumbasierten Detektortechnologie verwendet werden. Ziel dieser Arbeit ist daher die Untersuchung und Realisierung eines passiv gütegeschalteten Nd3+:YVO4 Lasers bei einer Wellenlänge von 914nm für die Anwendung in einem automobilen Lidar Sensor. Zur Untersuchung der für die Lidaranwendung relevanten Laserparameter werden insgesamt drei experimentelle Resonatorkonfigurationen verwendet. Die Konfigurationen sind dabei so gewählt, dass die Laserparameter möglichst entkoppelt vom Gesamtsystem analysiert werden können. Experimentelle Untersuchungen zeigen, dass der quasikontinuierlich gepumpte Nd3+:YVO4 Laser Pulsdauern im einstelligen Nanosekundenbereich und Pulsenergien von knapp 40 μJ erreichen kann. Zudem lässt sich für eine mögliche Lidaranwendung die Repetitionsrate bis ungefähr 60 kHz über die verwendete Pumpleistung skalieren. Der Vergleich mit der Theorie basierend auf Ratengleichungen zeigt eine gute Übereinstimmung zum Experiment, woraus sich das zukünftige Potential des Lasers für mögliche Anwendungen abschätzen lässt. Über alle Untersuchungen hinweg konnte eine sehr gute Strahlqualität beobachtet werden, was in der Lidaranwendung ein hervorragendes Auflösevermögen verspricht. Neben der Betrachtung verschiedener Systemzusammenhänge mittels experimenteller Konfigurationen wird ein kompakter, monolithischer, passiv gütegeschalteter Demonstratoraufbau im Einzelpulsbetrieb bei einer Wiederholrate von 200 Hz präsentiert. Hierbei kommt als Pumplaser ein 808nm Breitstreifen-Diodenlaser zum Einsatz, welcher verglichen mit einem fasergekoppelten Laserdiodenmodul nicht nur ein deutlich kompakteres Gesamtsystem verspricht, sondern ebenfalls eine schmalere Linienbreite besitzt. Folglich kann das Gesamtsystem allein durch Anpassung des Pumplaserstroms und ohne aktive Temperaturstabilisierung in einem Temperaturbereich von 20-50 °C stabil betrieben werden. Zudem liefert der kurze Resonator des monolithischen Laserkristalls nicht nur kurze Pulsdauern, sondern ermöglicht ebenfalls den Betrieb auf einer einzelnen longitudinalen Mode und folglich spektrale Emissionsbandbreiten von wenigen Pikometern. Hierdurch ergibt sich für Langzeitmessungen über 60 Minuten eine hervorragende Stabilität der spektralen Eigenschaften, der Pulsenergie und der Pulsdauer.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart