Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Nasser, Jazdi"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Distributed cooperative deep transfer learning for industrial image recognition
    (2020) Maschler, Benjamin; Kamm, Simon; Nasser, Jazdi; Weyrich, Michael
    In this paper, a novel light-weight incremental class learning algorithm for live image recognition is presented. It features a dual memory architecture and is capable of learning formerly unknown classes as well as conducting its learning across multiple instances at multiple locations without storing any images. In addition to tests on the ImageNet dataset, a prototype based upon a Raspberry Pi and a webcam is used for further evaluation: The proposed algorithm successfully allows for the performant execution of image classification tasks while learning new classes at several sites simultaneously, thereby enabling its application to various industry use cases, e.g. predictive maintenance or self-optimization.
  • Thumbnail Image
    ItemOpen Access
    Realization of AI-enhanced industrial automation systems using intelligent Digital Twins
    (2020) Nasser, Jazdi; Ashtari Talkhestani, Behrang; Maschler, Benjamin; Weyrich, Michael
    A requirement of future industrial automation systems is the application of intelligence in the context of their optimization, adaptation and reconfiguration. This paper begins with an introduction of the definition of (artificial) intelligence to derive a framework for artificial intelligence enhanced industrial automation systems: An artificial intelligence component is connected with the industrial automation system’s control unit and other entities through a series of standardized interfaces for data and information exchange. This framework is then put into context of the intelligent Digital Twin architecture, highlight the latter as a possible implementation of such systems. Concluding, a prototypical implementation on the basis of a modular cyber-physical production system is described. The intelligent Digital Twin realized this way provides the four fundamental sub-processes of intelligence, namely observation, analysis, reasoning and action. A detailed description of all technologies used is given.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart