Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Nawrath, Cornelius"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Bright source of Purcell‐enhanced, triggered, single photons in the telecom C‐band
    (2023) Nawrath, Cornelius; Joos, Raphael; Kolatschek, Sascha; Bauer, Stephanie; Pruy, Pascal; Hornung, Florian; Fischer, Julius; Huang, Jiasheng; Vijayan, Ponraj; Sittig, Robert; Jetter, Michael; Portalupi, Simone Luca; Michler, Peter
    Several emission features mark semiconductor quantum dots as promising non-classical light sources for prospective quantum implementations. For long-distance transmission and Si-based on-chip processing, the possibility to match the telecom C-band is decisive, while source brightness and high single-photon purity are key features in virtually any quantum implementation. An InAs/InGaAs/GaAs quantum dot emitting in the telecom C-band coupled to a circular Bragg grating is presented here. This cavity structure stands out due to its high broadband collection efficiency and high attainable Purcell factors. Here, simultaneously high brightness with a fiber-coupled single-photon count rate of 13.9 MHz for an excitation repetition rate of 228 MHz (first-lens single-photon collection efficiency ≈17% for NA = 0.6), while maintaining a low multi-photon contribution of g(2)(0) = 0.0052 is demonstrated. Moreover, the compatibility with temperatures of up to 40 K attainable with compact cryo coolers, further underlines the suitability for out-of-the-lab implementations.
  • Thumbnail Image
    ItemOpen Access
    Optical charge injection and coherent control of a quantum-dot spin-qubit emitting at telecom wavelengths
    (2022) Dusanowski, Łukasz; Nawrath, Cornelius; Portalupi, Simone L.; Jetter, Michael; Huber, Tobias; Klembt, Sebastian; Michler, Peter; Höfling, Sven
    Solid-state quantum emitters with manipulable spin-qubits are promising platforms for quantum communication applications. Although such light-matter interfaces could be realized in many systems only a few allow for light emission in the telecom bands necessary for long-distance quantum networks. Here, we propose and implement an optically active solid-state spin-qubit based on a hole confined in a single InAs/GaAs quantum dot grown on an InGaAs metamorphic buffer layer emitting photons in the C-band. We lift the hole spin-degeneracy using an external magnetic field and demonstrate hole injection, initialization, read-out and complete coherent control using picosecond optical pulses. These results showcase a solid-state spin-qubit platform compatible with preexisting optical fiber networks.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart