Browsing by Author "Negreiros, Beatriz"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Fuzzy map comparisons enable objective hydro‐morphodynamic model validation(2021) Negreiros, Beatriz; Schwindt, Sebastian; Haun, Stefan; Wieprecht, SilkeNumerical modeling represents a state‐of‐the‐art technique to simulate hydro‐morphodynamic processes in river ecosystems. Numerical models are often validated based on observed topographic change in the form of pixel information on net erosion or deposition over a simulation period. When model validation is performed by a pixel‐by‐pixel comparison of exactly superimposed simulated and observed pixels, zero or negative correlation coefficients are often calculated, suggesting poor model performance. Thus, a pixel‐by‐pixel approach penalizes quantitative simulation errors, even if a model conceptually works well. To distinguish between reasonably well‐performing and non‐representative models, this study introduces and tests fuzzy map comparison methods. First, we use a fuzzy numerical map comparison to compensate for spatial offset errors in correlation analyses. Second, we add a level of fuzziness with a fuzzy kappa map comparison to additionally address quantitative inaccuracy in modeled topographic change by categorizing data. Sample datasets from a physical lab model and datasets from a 6.9 km long gravel-cobble bed river reach enable the verification of the relevance of fuzzy map comparison methods. The results indicate that a fuzzy numerical map comparison is a viable technique to compensate for model errors stemming from spatial offset. In addition, fuzzy kappa map comparisons are suitable for objectively expressing subjectively perceived correlation between two maps, provided that a small number of categories is used. The methods tested and the resulting spatially explicit comparison maps represent a significant opportunity to improve the evaluation and potential calibration of numerical models of river ecosystems in the future.Item Open Access A multi‐parameter approach to quantify riverbed clogging and vertical hyporheic connectivity(2023) Negreiros, Beatriz; Aybar Galdos, Alcides; Seitz, Lydia; Noack, Markus; Schwindt, Sebastian; Wieprecht, Silke; Haun, StefanRiverbed clogging is key to assessing vertical connectivity in the hyporheic zone and is often quantified using single-parameter or qualitative approaches. However, clogging is driven by multiple, interacting physical and bio-geochemical parameters, which do not allow for a conclusive assessment of hyporheic connectivity with single-parameter approaches. In addition, existing qualitative assessments lack transparency and repeatability. This study introduces a Multi-Parameter Approach to quantify Clogging and vertical hyporheic connectivity (MultiPAC), which builds on standardized measurements of physical (grain size characteristics, porosity, hydraulic conductivity) and bio-geochemical (interstitial dissolved oxygen) parameters. We apply MultiPAC at three gravel-bed rivers and show how the set of parameters provides a representative appreciation of physical riverbed clogging, thus quantifying vertical hyporheic connectivity. However, more parameters are required to fully characterize biological clogging. In addition, MultiPAC locates clogged layers in the hyporheic zone through multi-parameter vertical profiles over the riverbed depth. The discussion outlines the relevance of MultiPAC to guide field surveys.