Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Neuman, Nicolás I."

Filter results by typing the first few letters
Now showing 1 - 7 of 7
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Activation of aromatic C-F bonds by a N‐heterocyclic olefin (NHO)
    (2020) Mandal, Debdeep; Chandra, Shubhadeep; Neuman, Nicolás I.; Mahata, Alok; Sarkar, Arighna; Kundu, Abhinanda; Anga, Srinivas; Rawat, Hemant; Schulzke, Carola; Mote, Kaustubh R.; Sarkar, Biprajit; Chandrasekhar, Vadapalli; Jana, Anukul
    A N‐heterocyclic olefin (NHO), a terminal alkene selectively activates aromatic C-F bonds without the need of any additional catalyst. As a result, a straightforward methodology was developed for the formation of different fluoroaryl‐substituted alkenes in which the central carbon-carbon double bond is in a twisted geometry.
  • Thumbnail Image
    ItemOpen Access
    Directed design of a AuI complex with a reduced mesoionic carbene radical ligand : insights from 1,2,3-triazolylidene selenium adducts and extensive electrochemical investigations
    (2021) Beerhues, Julia; Neubrand, Maren; Sobottka, Sebastian; Neuman, Nicolás I.; Aberhan, Hannes; Chandra, Shubhadeep; Sarkar, Biprajit
    Carbene‐based radicals are important for both fundamental and applied chemical research. Herein, extensive electrochemical investigations of nine different 1,2,3‐triazolylidene selenium adducts are reported. It is found that the half‐wave potentials of the first reduction of the selones correlate with their calculated LUMO levels and the LUMO levels of the corresponding triazolylidene‐based mesoionic carbenes (MICs). Furthermore, unexpected quasi‐reversibility of the reduction of two triazoline selones, exhibiting comparable reduction potentials, was discovered. Through UV/Vis/NIR and EPR spectroelectrochemical investigations supported by DFT calculations, the radical anion was unambiguously assigned to be triazoline centered. This electrochemical behavior was transferred to a triazolylidene‐type MIC‐gold phenyl complex resulting in a MIC‐radical coordinated AuI species. Apart from UV‐Vis‐NIR and EPR spectroelectrochemical investigations of the reduction, the reduced gold‐coordinated MIC radical complex was also formed in situ in the bulk through chemical reduction. This is the first report of a monodentate triazolylidene‐based MIC ligand that can be reduced to its anion radical in a metal complex. The results presented here provide design principles for stabilizing radicals based on MICs.
  • Thumbnail Image
    ItemOpen Access
    Electrochemistry and spin‐crossover behavior of fluorinated terpyridine‐based Co(II) and Fe(II) complexes
    (2023) Nößler, Maite; Jäger, René; Hunger, David; Reimann, Marc; Bens, Tobias; Neuman, Nicolás I.; Singha Hazari, Arijit; Kaupp, Martin; Slageren, Joris van; Sarkar, Biprajit
    Due to their ability to form stable molecular complexes that have tailor-made properties, terpyridine ligands are of great interest in chemistry and material science. In this regard, we prepared two terpyridine ligands with two different fluorinated phenyl rings on the backbone. The corresponding CoII and FeII complexes were synthesized and characterized by single-crystal X-ray structural analysis, electrochemistry and temperature-dependent SQUID magnetometry. Single crystal X-ray diffraction analyses at 100 K of these complexes revealed Co-N and Fe-N bond lengths that are typical of low spin CoII and FeII centers. The metal centers are coordinated in an octahedral fashion and the fluorinated phenyl rings on the backbone are twisted out of the plane of the terpyridine unit. The complexes were investigated with cyclic voltammetry and UV/Vis-NIR spectroelectrochemistry. All complexes show a reversible oxidation and several reduction processes. Temperature dependent SQUID magnetometry revealed a gradual thermal SCO behavior in two of the complexes, while EPR spectroscopy provided further insights on the electronic structure of the metal complexes, as well as site of reduction.
  • Thumbnail Image
    ItemOpen Access
    Isomerization reactions in anionic mesoionic carbene-borates and control of properties and reactivities in the resulting CoII complexes through agostic interactions
    (2020) Stubbe, Jessica; Neuman, Nicolás I.; McLellan, Ross; Sommer, Michael G.; Nößler, Maite; Beerhues, Julia; Mulvey, Robert E.; Sarkar, Biprajit
    We present herein anionic borate‐based bi‐mesoionic carbene compounds of the 1,2,3‐triazol‐4‐ylidene type that undergo C-N isomerization reactions. The isomerized compounds are excellent ligands for CoII centers. Strong agostic interactions with the “C-H”‐groups of the cyclohexyl substituents result in an unusual low‐spin square planar CoII complex, which is unreactive towards external substrates. Such agostic interactions are absent in the complex with phenyl substituents on the borate backbone. This complex displays a high‐spin tetrahedral CoII center, which is reactive towards external substrates including dioxygen. To the best of our knowledge, this is also the first investigation of agostic interactions through single‐crystal EPR spectroscopy. We conclusively show here that the structure and properties of these CoII complexes can be strongly influenced through interactions in the secondary coordination sphere. Additionally, we unravel a unique ligand rearrangement for these classes of anionic mesoionic carbene‐based ligands.
  • Thumbnail Image
    ItemOpen Access
    Mesoionic imines (MIIs) : strong donors and versatile ligands for transition metals and main group substrates
    (2022) Rudolf, Richard; Neuman, Nicolás I.; Walter, Robert R. M.; Ringenberg, Mark. R.; Sarkar, Biprajit
    We report the synthesis and the reactivity of 1,2,3‐triazolin‐5‐imine type mesoionic imines (MIIs). The MIIs are accessible by a base‐mediated cycloaddition between a substituted acetonitrile and an aromatic azide, methylation by established routes and subsequent deprotonation. C=O‐stretching frequencies in MII-CO2 and -Rh(CO)2Cl complexes were used to determine the overall donor strength. The MIIs are stronger donors than the N‐heterocyclic imines (NHIs). MIIs are excellent ligands for main group elements and transition metals in which they display substituent‐induced fluorine‐specific interactions and undergo C-H activation. DFT calculations gave insights into the frontier orbitals of the MIIs. The calculations predict a relatively small HOMO-LUMO gap compared to other related ligands. MIIs are potentially able to act as both π‐donor and π‐acceptor ligands. This report highlights the potential of MIIs to display exciting properties with a huge potential for future development.
  • Thumbnail Image
    ItemOpen Access
    N,N′‐ethylene‐bridged bis‐2‐aryl‐pyrrolinium cations to E‐diaminoalkenes : non‐identical stepwise reversible double‐redox coupled bond activation reactions
    (2020) Nayak, Mithilesh Kumar; Stubbe, Jessica; Neuman, Nicolás I.; Narayanan, Ramakirushnan Suriya; Maji, Sandipan; Schulzke, Carola; Chandrasekhar, Vadapalli; Sarkar, Biprajit; Jana, Anukul
    This work presents a stepwise reversible two‐electron transfer induced hydrogen shift leading to the conversion of a bis‐pyrrolinium cation to an E‐diaminoalkene and vice versa. Remarkably, the forward and the reverse reaction, which are both reversible, follow two completely different reaction pathways. Establishing such unprecedented property in this type of processes was possible by developing a novel synthetic route towards the starting dication. All intermediates involved in both the forward and the backward reactions were comprehensively characterized by a combination of spectroscopic, crystallographic, electrochemical, spectroelectrochemical, and theoretical methods. The presented synthetic route opens up new possibilities for the generation of multi‐pyrrolinium cation scaffold‐based organic redox systems, which constitute decidedly sought‐after molecules in contemporary chemistry.
  • Thumbnail Image
    ItemOpen Access
    Spin crossover and fluorine‐specific interactions in metal complexes of terpyridines with polyfluorocarbon tails
    (2023) Nößler, Maite; Neuman, Nicolás I.; Böser, Lisa; Jäger, René; Singha Hazari, Arijit; Hunger, David; Pan, Yixian; Lücke, Clemens; Bens, Tobias; Slageren, Joris van; Sarkar, Biprajit
    In coordination chemistry and materials science, terpyridine ligands are of great interest, due to their ability to form stable complexes with a broad range of transition metal ions. We report three terpyridine ligands containing different perfluorocarbon (PFC) tails on the backbone and the corresponding FeII and CoII complexes. The CoII complexes display spin crossover close to ambient temperature, and the nature of this spin transition is influenced by the length of the PFC tail on the ligand backbone. The electrochemical properties of the metal complexes were investigated with cyclic voltammetry revealing one oxidation and several reduction processes. The fluorine-specific interactions were investigated by EPR measurements. Analysis of the EPR spectra of the complexes as microcrystalline powders and in solution reveals exchange-narrowed spectra without resolved hyperfine splittings arising from the 59Co nucleus; this suggests complex aggregation in solution mediated by interactions of the PFC tails. Interestingly, addition of perfluoro-octanol in different ratios to the acetonitrile solution of the sample resulted in the disruption of the Furn:x-wiley:09476539:media:chem202301246:chem202301246-math-0001 F interactions of the tails. To the best of our knowledge, this is the first investigation of fluorine-specific interactions in metal complexes through EPR spectroscopy, as exemplified by exchange narrowing.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart