Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Olesch, Darius"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Adaptive numerical integration of exponential finite elements for a phase field fracture model
    (2021) Olesch, Darius; Kuhn, Charlotte; Schlüter, Alexander; Müller, Ralf
    Phase field models for fracture are energy-based and employ a continuous field variable, the phase field, to indicate cracks. The width of the transition zone of this field variable between damaged and intact regions is controlled by a regularization parameter. Narrow transition zones are required for a good approximation of the fracture energy which involves steep gradients of the phase field. This demands a high mesh density in finite element simulations if 4-node elements with standard bilinear shape functions are used. In order to improve the quality of the results with coarser meshes, exponential shape functions derived from the analytic solution of the 1D model are introduced for the discretization of the phase field variable. Compared to the bilinear shape functions these special shape functions allow for a better approximation of the fracture field. Unfortunately, lower-order Gauss-Legendre quadrature schemes, which are sufficiently accurate for the integration of bilinear shape functions, are not sufficient for an accurate integration of the exponential shape functions. Therefore in this work, the numerical accuracy of higher-order Gauss-Legendre formulas and a double exponential formula for numerical integration is analyzed.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart