Browsing by Author "Pesci, María Herminia"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Assessment of uncertainties in a complex modeling chain for predicting reservoir sedimentation under changing climate(2023) Pesci, María Herminia; Mouris, Kilian; Haun, Stefan; Förster, KristianLong-term predictions of reservoir sedimentation require an objective consideration of the preceding catchment processes. In this study, we apply a complex modeling chain to predict sedimentation processes in the Banja reservoir (Albania). The modeling chain consists of the water balance model WaSiM, the soil erosion and sediment transport model combination RUSLE-SEDD, and the 3d hydro-morphodynamic reservoir model SSIIM2 to accurately represent all relevant physical processes. Furthermore, an ensemble of climate models is used to analyze future scenarios. Although the capabilities of each model enable us to obtain satisfying results, the propagation of uncertainties in the modeling chain cannot be neglected. Hence, approximate model parameter uncertainties are quantified with the First-Order Second-Moment (FOSM) method. Another source of uncertainty for long-term predictions is the spread of climate projections. Thus, we compared both sources of uncertainties and found that the uncertainties generated by climate projections are 408% (for runoff), 539% (for sediment yield), and 272% (for bed elevation in the reservoir) larger than the model parameter uncertainties. We conclude that (i) FOSM is a suitable method for quantifying approximate parameter uncertainties in a complex modeling chain, (ii) the model parameter uncertainties are smaller than the spread of climate projections, and (iii) these uncertainties are of the same order of magnitude as the change signal for the investigated low-emission scenario. Thus, the proposed method might support modelers to communicate different sources of uncertainty in complex modeling chains, including climate impact models.Item Open Access An interdisciplinary model chain quantifies the footprint of global change on reservoir sedimentation(2023) Mouris, Kilian; Schwindt, Sebastian; Pesci, María Herminia; Wieprecht, Silke; Haun, StefanGlobal change alters hydro-climatic conditions, affects land use, and contributes to more frequent droughts and floods. Large artificial reservoirs may effectively alleviate hydro-climatic extremes, but their storage capacities are threatened by sedimentation processes, which in turn are exacerbated by land use change. Envisioning strategies for sustainable reservoir management requires interdisciplinary model chains to emulate key processes driving sedimentation under global change scenarios. Therefore, we introduce a model chain for the long-term prediction of complex three-dimensional (3d) reservoir sedimentation considering concurrent catchment, hydro-climatic, and land-use conditions. Applied to a mountainous Mediterranean catchment, the model chain predicts increased sediment production and decreased discharge for high and medium emission pathways. Increased winter precipitation, accompanied by a transition from snowfall to rainfall, is projected to aggravate reduced summer precipitation, emphasizing a growing need for reservoirs. Additionally, higher winter precipitation proliferates sediment production and reservoir sedimentation. Land use change can outweigh the increased reservoir sedimentation originating from hydro-climatic change, which highlights the significance of localized actions to reduce sediment production. Finally, a 3d hydro-morphodynamic model provides insights into interactions between global change and reservoir sedimentation with spatially explicit information on future sedimentation patterns facilitating the implementation of management strategies.