Browsing by Author "Pott, Peter P."
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Additively manufactured porous filling pneumatic network actuator(2023) Giacoppo, Giuliano A.; Hötzel, Julia; Pott, Peter P.This research project investigated the additive manufacturing of pneumatic actuators based on the principle of droplet dosing using an Arburg Freeformer 300-3X 3D printer. The developed structure consists of a porous inner filling and a dense, airtight chamber. By selectively varying the filling densities of the porous inner filling, different membrane deflections of the actuator were achieved. By linking the actuators, a pneumatic network actuator was developed that could be used in endorobotics. To describe the membrane deflection of an additively manufactured pneumatic actuator, a mathematical model was developed that takes into account the influence of additive manufacturing and porous filling. Using a dedicated test rig, the predicted behavior of the pneumatic actuators was shown to be qualitatively consistent. In addition, a pneumatic network actuator (PneuNet) with a diameter of 17 mm and a height of 76 mm, consisting of nine chambers with different filling densities, could be bent through 82° under a pressure of 8 bar. Our study shows that the variation of filling densities during production leads to different membrane deflections. The mathematical model developed provides satisfactory predictions, although the influence of additive manufacturing needs to be determined experimentally. Post-processing is still a necessary step to realize the full bending potential of these actuators, although challenges regarding air-tightness remain. Future research approaches include studying the deflection behavior of the chambers in multiple directions, investigating alternative materials, and optimizing the printing process to improve mechanical properties and reliability.Item Open Access Design and evaluation of new user control devices for improved ergonomics in flexible robotic endoscopy(2025) Heisterberg, Leander; Manfredi, Luigi; Wichmann, Dörte; Maier, Thomas; Pott, Peter P.Background: The ergonomics of flexible endoscopes require improvement as the current design carries a high risk of musculoskeletal injury for endoscopists. Robotic systems offer a solution by separating the endoscope from the control handle, allowing a focus on ergonomics and usability. Despite the increasing interest in this field, little attention has been paid towards developing ergonomic human input devices. This study addresses two key questions: How can handheld control devices for flexible robotic endoscopy be designed to prioritize ergonomics and usability? And, how effective are these new devices in a simulated clinical environment?
Methods: Addressing this gap, the study proposes two handheld input device models for controlling a flexible endoscope in four degrees of freedom (DOFs) and an endoscopic instrument in three DOFs. A two-stage evaluation was conducted with six endoscopists evaluating the physical ergonomics and a final clinical user evaluation with seven endoscopists using a virtual colonoscopy simulator with proportional velocity and position mapping.
Results and discussion: Both models demonstrated clinical suitability, with the first model scoring 4.8 and the second model scoring 5.2 out of 6 in the final evaluation. In sum, the study presents two designs of ergonomic control devices for robotic colonoscopy, which have the potential to reduce endoscopy-related injuries. Furthermore, the proposed colonoscopy simulator is useful to evaluate the benefits of different mapping modes. This could help to optimize the design and control mechanism of future control devices.Item Open Access Feasibility of pressurized intra peritoneal aerosol chemotherapy using an ultrasound aerosol generator (usPIPAC)(2022) Höltzcke, Phil; Sautkin, Iaroslav; Clere, Samuel; Castagna, Arianna; Königsrainer, Alfred; Pott, Peter P.; Reymond, Marc A.Background: We tested the feasibility of ultrasound technology for generating pressurized intraperitoneal aerosol chemotherapy (usPIPAC) and compared its performance vs. comparator (PIPAC). Material and methods: A piezoelectric ultrasound aerosolizer (NextGen, Sinaptec) was compared with the available technology (Capnopen, Capnomed). Granulometry was measured for water, Glc 5%, and silicone oil using laser diffraction spectrometry. Two- and three-dimensional (2D and 3D) spraying patterns were determined with methylene blue. Tissue penetration of doxorubicin (DOX) was measured by fluorescence microscopy in the enhanced inverted Bovine Urinary Bladder model (eIBUB). Tissue DOX concentration was measured by high-performance liquid chromatography (HPLC). Results: The droplets median aerodynamic diameter was (usPIPAC vs. PIPAC): H20: 40.4 (CI 10-90%: 19.0-102.3) vs. 34.8 (22.8-52.7) µm; Glc 5%: 52.8 (22.2-132.1) vs. 39.0 (23.7-65.2) µm; Silicone oil: 178.7 (55.7-501.8) vs. 43.0 (20.2-78.5) µm. 2D and 3D blue ink distribution pattern of usPIPAC was largely equivalent with PIPAC, as was DOX tissue concentration (usPIPAC: 0.65 (CI 5-95%: 0.44-0.86) vs. PIPAC: 0.88 (0.59-1.17) ng/ml, p = 0.29). DOX tissue penetration with usPIPAC was inferior to PIPAC: usPIPAC: 60.1 (CI 5.95%: 58.8-61.5) µm vs. PIPAC: 1172 (1157-1198) µm, p < 0.001). The homogeneity of spatial distribution (top, middle and bottom of the eIBUB) was comparable between modalities. Discussion: usPIPAC is feasible, but its performance as a drug delivery system remains currently inferior to PIPAC, in particular for lipophilic solutions.Item Open Access Miniature low-cost γ-radiation sensor for localization of radioactively marked lymph nodes(2022) Behling, Merlin; Wezel, Felix; Pott, Peter P.Detection of metastasis spread at an early stage of disease in lymph nodes can be achieved by imaging techniques, such as PET and fluoride-marked tumor cells. Intraoperative detection of small metastasis can be problematic especially in minimally invasive surgical settings. A γ-radiation sensor can be inserted in the situs to facilitate intraoperative localization of the lymph nodes. In the minimally invasive setting, the sensor must fit through the trocar and for robot-aided interventions, a small, capsule-like device is favorable. Size reduction could be achieved by using only a few simple electronic parts packed in a single-use sensor-head also leading to a low-cost device. This paper first describes the selection of an appropriate low-cost diode, which is placed in a sensor head (Ø 12 mm) and characterized in a validation experiment. Finally, the sensor and its performance during a detection experiment with nine subjects is evaluated. The subjects had to locate a 137Cs source (138 kBq activity, 612 keV) below a wooden plate seven times. Time to accomplish this task and error rate were recorded and evaluated. The time needed by the subjects to complete each run was 95 ± 68.1 s for the first trial down to 40 ± 23.9 s for the last. All subjects managed to locate the 137Cs source precisely. Further reduction in size and a sterilizable housing are prerequisites for in vitro tests on explanted human lymph nodes and finally in vivo testing.