Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Röhrle, Oliver"

Filter results by typing the first few letters
Now showing 1 - 20 of 26
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    3D ultrasound-based determination of skeletal muscle fascicle orientations
    (2024) Sahrmann, Annika S.; Vosse, Lukas; Siebert, Tobias; Handsfield, Geoffrey G.; Röhrle, Oliver
    Architectural parameters of skeletal muscle such as pennation angle provide valuable information on muscle function, since they can be related to the muscle force generating capacity, fiber packing, and contraction velocity. In this paper, we introduce a 3D ultrasound-based workflow for determining 3D fascicle orientations of skeletal muscles. We used a custom-designed automated motor driven 3D ultrasound scanning system for obtaining 3D ultrasound images. From these, we applied a custom-developed multiscale-vessel enhancement filter-based fascicle detection algorithm and determined muscle volume and pennation angle. We conducted trials on a phantom and on the human tibialis anterior (TA) muscle of 10 healthy subjects in plantarflexion (157 ± 7 ∘), neutral position (109 ± 7 ∘, corresponding to neutral standing), and one resting position in between (145 ± 6 ∘). The results of the phantom trials showed a high accuracy with a mean absolute error of 0.92 ± 0.59 ∘. TA pennation angles were significantly different between all positions for the deep muscle compartment; for the superficial compartment, angles are significantly increased for neutral position compared to plantarflexion and resting position. Pennation angles were also significantly different between superficial and deep compartment. The results of constant muscle volumes across the 3 ankle joint angles indicate the suitability of the method for capturing 3D muscle geometry. Absolute pennation angles in our study were slightly lower than recent literature. Decreased pennation angles during plantarflexion are consistent with previous studies. The presented method demonstrates the possibility of determining 3D fascicle orientations of the TA muscle in vivo.
  • Thumbnail Image
    ItemOpen Access
    About the applicability of the theory of porous media for the modelling of non‐isothermal material injection into porous structures
    (2023) Völter, Jan-Sören L.; Ricken, Tim; Röhrle, Oliver
    In this contribution we investigate the relevance of the theory of porous media for the non-isothermal modelling of material injection into porous structures. In particular, we provide a model describing the injection of cement during percutaneous vertebroplasty, which is derived by consistently following the theory of porous media. We demonstrate numerically that this model elicits unphysical behaviour under local thermal non-equilibrium conditions. No distinct unphysical behaviour is observed under local thermal equilibrium conditions. We conclude that heuristic modifications of the model equations are necessary and suspect the unphysical behaviour to be caused by contradictory modelling assumptions.
  • Thumbnail Image
    ItemOpen Access
    Analysing the bone cement flow in the injection apparatus during vertebroplasty
    (2023) Trivedi, Zubin; Gehweiler, Dominic; Wychowaniec, Jacek K.; Ricken, Tim; Gueorguiev-Rüegg, Boyko; Wagner, Arndt; Röhrle, Oliver
    Vertebroplasty, a medical procedure for treating vertebral fractures, requires medical practitioners to inject bone cement inside the vertebra using a cannula attached to a syringe. The required injection force must be small enough for the practitioner to apply it by hand while remaining stable for a controlled injection. Several factors could make the injection force unintuitive for the practitioners, one of them being the non‐Newtonian nature of the bone cement. The viscosity of the bone cement varies as it flows through the different parts of the injection apparatus and the porous cancellous interior of the vertebra. Therefore, it is important to study the flow of bone cement through these parts. This work is a preliminary study on the flow of bone cement through the injection apparatus. Firstly, we obtained the rheological parameters for the power law model of bone cement using experiments using standard clinical equipment. These parameters were then used to obtain the shear rate, viscosity, and velocity profiles of the bone cement flow through the cannula. Lastly, an analysis was carried out to understand the influence of various geometrical parameters of the injection apparatus, in which the radius of the cannula was found to be the most influential parameter.
  • Thumbnail Image
    ItemOpen Access
    A continuum mechanical porous media model for vertebroplasty : numerical simulations and experimental validation
    (2023) Trivedi, Zubin; Gehweiler, Dominic; Wychowaniec, Jacek K.; Ricken, Tim; Gueorguiev, Boyko; Wagner, Arndt; Röhrle, Oliver
    The outcome of vertebroplasty is hard to predict due to its dependence on complex factors like bone cement and marrow rheologies. Cement leakage could occur if the procedure is done incorrectly, potentially causing adverse complications. A reliable simulation could predict the patient-specific outcome preoperatively and avoid the risk of cement leakage. Therefore, the aim of this work was to introduce a computationally feasible and experimentally validated model for simulating vertebroplasty. The developed model is a multiphase continuum-mechanical macro-scale model based on the Theory of Porous Media. The related governing equations were discretized using a combined finite element-finite volume approach by the so-called Box discretization. Three different rheological upscaling methods were used to compare and determine the most suitable approach for this application. For validation, a benchmark experiment was set up and simulated using the model. The influence of bone marrow and parameters like permeability, porosity, etc., was investigated to study the effect of varying conditions on vertebroplasty. The presented model could realistically simulate the injection of bone cement in porous materials when used with the correct rheological upscaling models, of which the semi-analytical averaging of the viscosity gave the best results. The marrow viscosity is identified as the crucial reference to categorize bone cements as ‘high- ’or ‘low-’ viscosity in the context of vertebroplasty. It is confirmed that a cement with higher viscosity than the marrow ensures stable development of the injection and a proper cement interdigitation inside the vertebra.
  • Thumbnail Image
    ItemOpen Access
    Coupled simulations and parameter inversion for neural system and electrophysiological muscle models
    (2024) Homs‐Pons, Carme; Lautenschlager, Robin; Schmid, Laura; Ernst, Jennifer; Göddeke, Dominik; Röhrle, Oliver; Schulte, Miriam
    The functioning of the neuromuscular system is an important factor for quality of life. With the aim of restoring neuromuscular function after limb amputation, novel clinical techniques such as the agonist‐antagonist myoneural interface (AMI) are being developed. In this technique, the residual muscles of an agonist‐antagonist pair are (re‐)connected via a tendon in order to restore their mechanical and neural interaction. Due to the complexity of the system, the AMI can substantially profit from in silico analysis, in particular to determine the prestretch of the residual muscles that is applied during the procedure and determines the range of motion of the residual muscle pair. We present our computational approach to facilitate this. We extend a detailed multi‐X model for single muscles to the AMI setup, that is, a two‐muscle‐one‐tendon system. The model considers subcellular processes as well as 3D muscle and tendon mechanics and is prepared for neural process simulation. It is solved on high performance computing systems. We present simulation results that show (i) the performance of our numerical coupling between muscles and tendon and (ii) a qualitatively correct dependence of the range of motion of muscles on their prestretch. Simultaneously, we pursue a Bayesian parameter inference approach to invert for parameters of interest. Our approach is independent of the underlying muscle model and represents a first step toward parameter optimization, for instance, finding the prestretch, to be applied during surgery, that maximizes the resulting range of motion. Since our multi‐X fine‐grained model is computationally expensive, we present inversion results for reduced Hill‐type models. Our numerical results for cases with known ground truth show the convergence and robustness of our approach.
  • Thumbnail Image
    ItemOpen Access
    Determination of muscle shape deformations of the tibialis anterior during dynamic contractions using 3D ultrasound
    (2024) Sahrmann, Annika S.; Vosse, Lukas; Siebert, Tobias; Handsfield, Geoffrey G.; Röhrle, Oliver
    Purpose: In this paper, we introduce a novel method for determining 3D deformations of the human tibialis anterior (TA) muscle during dynamic movements using 3D ultrasound. Materials and Methods: An existing automated 3D ultrasound system is used for data acquisition, which consists of three moveable axes, along which the probe can move. While the subjects perform continuous plantar- and dorsiflexion movements in two different controlled velocities, the ultrasound probe sweeps cyclically from the ankle to the knee along the anterior shin. The ankle joint angle can be determined using reflective motion capture markers. Since we considered the movement direction of the foot, i.e., active or passive TA, four conditions occur: slow active, slow passive, fast active, fast passive. By employing an algorithm which defines ankle joint angle intervals, i.e., intervals of range of motion (ROM), 3D images of the volumes during movement can be reconstructed. Results: We found constant muscle volumes between different muscle lengths, i.e., ROM intervals. The results show an increase in mean cross-sectional area (CSA) for TA muscle shortening. Furthermore, a shift in maximum CSA towards the proximal side of the muscle could be observed for muscle shortening. We found significantly different maximum CSA values between the fast active and all other conditions, which might be caused by higher muscle activation due to the faster velocity. Conclusion: In summary, we present a method for determining muscle volume deformation during dynamic contraction using ultrasound, which will enable future empirical studies and 3D computational models of skeletal muscles.
  • Thumbnail Image
    ItemOpen Access
    Determining a musculoskeletal system’s pre-stretched state using continuum-mechanical forward modelling and joint range optimization
    (2024) Avci, Okan; Röhrle, Oliver
    The subject-specific range of motion (RoM) of a musculoskeletal joint system is balanced by pre-tension levels of individual muscles, which affects their contraction capability. Such an inherent pre-tension or pre-stretch of muscles is not measureable with in vivo experiments. Using a 3D continuum mechanical forward simulation approach for motion analysis of the musculoskeletal system of the forearm with 3 flexor and 2 extensor muscles, we developed an optimization process to determine the muscle fibre pre-stretches for an initial arm position, which is given human dataset. We used RoM values of a healthy person to balance the motion in extension and flexion. The performed sensitivity study shows that the fibre pre-stretches of the m. brachialis , m. biceps brachii and m. triceps brachii with 91% dominate the objective flexion ratio, while m. brachiradialis and m. anconeus amount 7.8% and 1.2%. Within the multi-dimensional space of the surrogate model, 3D sub-spaces of primary variables, namely the dominant muscles and the global objective, flexion ratio, exhibit a path of optimal solutions. Within this optimal path, the muscle fibre pre-stretch of two flexors demonstrate a negative correlation, while, in contrast, the primary extensor, m. triceps brachii correlates positively to each of the flexors. Comparing the global optimum with four other designs along the optimal path, we saw large deviations, e.g., up to 15 ∘in motion and up to 40% in muscle force. This underlines the importance of accurate determination of fibre pre-stretch in muscles, especially, their role in pathological muscular disorders and surgical applications such as free muscle or tendon transfer.
  • Thumbnail Image
    ItemOpen Access
    Editorial - somatosensory integration in human movement : perspectives for neuromechanics, modelling and rehabilitation
    (2021) Gizzi, Leonardo; Vujaklija, Ivan; Sartori, Massimo; Röhrle, Oliver; Severini, Giacomo
  • Thumbnail Image
    ItemOpen Access
    Experiments meet simulations : understanding skeletal muscle mechanics to address clinical problems
    (2024) Ateş, Filiz; Röhrle, Oliver
    This article aims to present some novel experimental approaches and computational methods providing detailed insights into the mechanical behavior of skeletal muscles relevant to clinical problems associated with managing and treating musculoskeletal diseases. The mechanical characterization of skeletal muscles in vivo is crucial for better understanding of, prevention of, or intervention in movement alterations due to exercise, aging, or pathologies related to neuromuscular diseases. To achieve this, we suggest an intraoperative experimental method including direct measurements of human muscle forces supported by computational methodologies. A set of intraoperative experiments indicated the major role of extracellular matrix (ECM) in spastic cerebral palsy. The force data linked to joint function are invaluable and irreplaceable for evaluating individual muscles however, they are not feasible in many situations. Three‐dimensional, continuum‐mechanical models provide a way to predict the exerted muscle forces. To obtain, however, realistic predictions, it is important to investigate the muscle not by itself, but embedded within the respective musculoskeletal system, for example, a 6‐muscle upper arm model, and the ability to obtain non‐invasively, or at least, minimally invasively material parameters for continuum‐mechanical skeletal muscle models, for example, by presently proposed homogenization methodologies. Botulinum toxin administration as a treatment option for spasticity is exemplified by combining experiments with modeling to find out the mechanical outcomes of altered ECM and the controversial effects of the toxin. The potentials and limitations of both experimental and modeling approaches and how they need each other are discussed.
  • Thumbnail Image
    ItemOpen Access
    Investigating the spatial resolution of EMG and MMG based on a systemic multi-scale model
    (2022) Klotz, Thomas; Gizzi, Leonardo; Röhrle, Oliver
    While electromyography (EMG) and magnetomyography (MMG) are both methods to measure the electrical activity of skeletal muscles, no systematic comparison between both signals exists. Within this work, we propose a novel in silico model for EMG and MMG and test the hypothesis that MMG surpasses EMG in terms of spatial selectivity, i.e. the ability to distinguish spatially shifted sources. The results show that MMG provides a slightly better spatial selectivity than EMG when recorded directly on the muscle surface. However, there is a remarkable difference in spatial selectivity for non-invasive surface measurements. The spatial selectivity of the MMG components aligned with the muscle fibres and normal to the body surface outperforms the spatial selectivity of surface EMG. Particularly, for the MMG’s normal-to-the-surface component the influence of subcutaneous fat is minimal. Further, for the first time, we analyse the contribution of different structural components, i.e. muscle fibres from different motor units and the extracellular space, to the measurable biomagnetic field. Notably, the simulations show that for the normal-to-the-surface MMG component, the contribution from volume currents in the extracellular space and in surrounding inactive tissues, is negligible. Further, our model predicts a surprisingly high contribution of the passive muscle fibres to the observable magnetic field.
  • Thumbnail Image
    ItemOpen Access
    Linking cortex and contraction : integrating models along the corticomuscular pathway
    (2023) Haggie, Lysea; Schmid, Laura; Röhrle, Oliver; Besier, Thor; McMorland, Angus; Saini, Harnoor
    Computational models of the neuromusculoskeletal system provide a deterministic approach to investigate input-output relationships in the human motor system. Neuromusculoskeletal models are typically used to estimate muscle activations and forces that are consistent with observed motion under healthy and pathological conditions. However, many movement pathologies originate in the brain, including stroke, cerebral palsy, and Parkinson’s disease, while most neuromusculoskeletal models deal exclusively with the peripheral nervous system and do not incorporate models of the motor cortex, cerebellum, or spinal cord. An integrated understanding of motor control is necessary to reveal underlying neural-input and motor-output relationships. To facilitate the development of integrated corticomuscular motor pathway models, we provide an overview of the neuromusculoskeletal modelling landscape with a focus on integrating computational models of the motor cortex, spinal cord circuitry, α-motoneurons  and skeletal muscle in regard to their role in generating voluntary muscle contraction. Further, we highlight the challenges and opportunities associated with an integrated corticomuscular pathway model, such as challenges in defining neuron connectivities, modelling standardisation, and opportunities in applying models to study emergent behaviour. Integrated corticomuscular pathway models have applications in brain-machine-interaction, education, and our understanding of neurological disease.
  • Thumbnail Image
    ItemOpen Access
    Low-dimensional data-based surrogate model of a continuum-mechanical musculoskeletal system based on non-intrusive model order reduction
    (2023) Kneifl, Jonas; Rosin, David; Avci, Okan; Röhrle, Oliver; Fehr, Jörg
    Over the last decades, computer modeling has evolved from a supporting tool for engineering prototype design to an ubiquitous instrument in non-traditional fields such as medical rehabilitation. This area comes with unique challenges, e.g. the complex modeling of soft tissue or the analysis of musculoskeletal systems. Conventional modeling approaches like the finite element (FE) method are computationally costly when dealing with such models, limiting their usability for real-time simulation or deployment on low-end hardware, if the model at hand cannot be simplified without losing its expressiveness. Non-traditional approaches such as surrogate modeling using data-driven model order reduction are used to make complex high-fidelity models more widely available regardless. They often involve a dimensionality reduction step, in which the high-dimensional system state is transformed onto a low-dimensional subspace or manifold, and a regression approach to capture the reduced system behavior. While most publications focus on one dimensionality reduction, such as principal component analysis (PCA) (linear) or autoencoder (nonlinear), we consider and compare PCA, kernel PCA, autoencoders, as well as variational autoencoders for the approximation of a continuum-mechanical system. In detail, we demonstrate the benefits of the surrogate modeling approach on a complex musculoskeletal system of a human upper-arm with severe nonlinearities and physiological geometry. We consider both, the model’s deformation and the internal stress as the two main quantities of interest in a FE context. By doing so we are able to create computationally low-cost surrogate models which capture the system behavior with high approximation quality and fast evaluations.
  • Thumbnail Image
    ItemOpen Access
    Mapping the role of oral cavity physiological factors into the viscoelastic model of denture adhesives for numerical implementation
    (2023) Ramakrishnan, Anantha Narayanan; Röhrle, Oliver; Ludtka, Christopher; Koehler, Josephine; Kiesow, Andreas; Schwan, Stefan
    Physiological parameters of the oral cavity have a profound impact on any restorative solutions designed for edentulous patients including denture adhesives. This study aims to mathematically quantify the influence of three such variables, namely: the temperature, pH, and the swelling of such adhesives under the influence of saliva on its mechanical behavior. The mathematical quantification is further aimed to implement a material model for such adhesives which considers the impact of such physiological factors. The denture adhesive is experimentally investigated by means of rheological steady state frequency sweep tests to obtain the relaxation spectrum of the material. The relaxation behavior is measured for a wide range of oral cavity temperatures and pH. Also, the adhesive is hydrated and upon swelling to different levels again tested to understand the impact of swelling on the mechanical behavior. The experimentally measured continuous relaxation spectrum is modeled as a viscoelastic material using a discrete set of points based on the Prony series discretization technique. The relaxation spectrums for various temperatures are compared and the possibility of a time-temperature superposition is explored for the model. Similarly, the measured values of Storage and loss modulus are investigated to understand the role of pH and swelling. The results in this study clearly indicated a horizontal shift in the relaxation behavior with increase in temperature. And hence, the time-temperature shift factor was calculated for the adhesive. The relaxation spectrum also showed a strong correlation with swelling of the adhesive and the pH. The influence of these two parameters were captured into the model based on the relaxation time parameter in the Prony series approach. Based on this study the impact of these parameters could be appreciated on the performance and mechanical behavior of denture adhesives and implemented into a Prony series based viscoelastic material model which can be used with numerical simulations.
  • Thumbnail Image
    ItemOpen Access
    A microstructurally-based, multi-scale, continuum-mechanical model of skeletal muscle tissue
    (2019) Bleiler, Christian; Ponte Castañeda, Pedro; Röhrle, Oliver
  • Thumbnail Image
    ItemOpen Access
    Modeling the chemoelectromechanical behavior of skeletal muscle using the parallel open-source software library OpenCMISS
    (2013) Heidlauf, Thomas; Röhrle, Oliver
    An extensible, flexible, multiscale and multiphysics model for non-isometric skeletal muscle behavior is presented. The skeletal muscle chemoelectromechanical model is based on a bottom-up approach modeling the entire excitation-contraction pathway by strongly coupling a detailed biophysical model of a half-sarcomere to the propagation of action potentials along skeletal muscle fibers, and linking cellular parameters to a transversely isotropic continuum-mechanical constitutive equation describing the overall mechanical behavior of skeletal muscle tissue. Since the multiscale model exhibits separable time scales, a special emphasis is placed on employing computationally efficient staggered solution schemes. Further, the implementation builds on the open-source software library OpenCMISS and uses state-ofthe-art parallelization techniques taking advantage of the unique anatomical fiber architecture of skeletal muscles. OpenCMISS utilizes standardized data structures for geometrical aspects (FieldML) and cellular models (CellML). Both standards are designed to allow for a maximum on flexibility, reproducibility, and extensibility. The results demonstrate the model´s capability of simulating different aspects of non-isometric muscle contraction and to efficiently simulate the chemoelectromechanical behavior in complex skeletal muscles such as the tibialis anterior muscle.
  • Thumbnail Image
    ItemOpen Access
    Modelling motor units in 3D : influence on muscle contraction and joint force via a proof of concept simulation
    (2023) Saini, Harnoor; Klotz, Thomas; Röhrle, Oliver
    Functional heterogeneity is a skeletal muscle’s ability to generate diverse force vectors through localised motor unit (MU) recruitment. Existing 3D macroscopic continuum-mechanical finite element (FE) muscle models neglect MU anatomy and recruit muscle volume simultaneously, making them unsuitable for studying functional heterogeneity. Here, we develop a method to incorporate MU anatomy and information in 3D models. Virtual fibres in the muscle are grouped into MUs via a novel “virtual innervation” technique, which can control the units’ size, shape, position, and overlap. The discrete MU anatomy is then mapped to the FE mesh via statistical averaging, resulting in a volumetric MU distribution. Mesh dependency is investigated using a 2D idealised model and revealed that the amount of MU overlap is inversely proportional to mesh dependency. Simultaneous recruitment of a MU’s volume implies that action potentials (AP) propagate instantaneously. A 3D idealised model is used to verify this assumption, revealing that neglecting AP propagation results in a slightly less-steady force, advanced in time by approximately 20 ms, at the tendons. Lastly, the method is applied to a 3D, anatomically realistic model of the masticatory system to demonstrate the functional heterogeneity of masseter muscles in producing bite force. We found that the MU anatomy significantly affected bite force direction compared to bite force magnitude. MU position was much more efficacious in bringing about bite force changes than MU overlap. These results highlight the relevance of MU anatomy to muscle function and joint force, particularly for muscles with complex neuromuscular architecture.
  • Thumbnail Image
    ItemOpen Access
    Multi-scale mechanobiological model for skeletal muscle hypertrophy
    (2022) Villota Narvaez, Yesid Alexis; Garzón-Alvarado, Diego A.; Röhrle, Oliver; Ramírez-Martínez, Angelica M.
    Skeletal muscle adaptation is correlated to training exercise by triggering different signaling pathways that target many functions; in particular, the IGF1-AKT pathway controls protein synthesis and degradation. These two functions regulate the adaptation in size and strength of muscles. Computational models for muscle adaptation have focused on: the biochemical description of signaling pathways or the mechanical description of muscle function at organ scale; however, an interrelation between these two models should be considered to understand how an adaptation in muscle size affects the protein synthesis rate. In this research, a dynamical model for the IGF1-AKT signaling pathway is linked to a continuum-mechanical model describing the active and passive mechanical response of a muscle; this model is used to study the impact of the adaptive muscle geometry on the protein synthesis at the fiber scale. This new computational model links the signaling pathway to the mechanical response by introducing a growth tensor, and links the mechanical response to the signaling pathway through the evolution of the protein synthesis rate. The predicted increase in cross sectional area (CSA) due to an 8 weeks training protocol excellently agreed with experimental data. Further, our results show that muscle growth rate decreases, if the correlation between protein synthesis and CSA is negative. The outcome of this study suggests that multi-scale models coupling continuum mechanical properties and molecular functions may improve muscular therapies and training protocols.
  • Thumbnail Image
    ItemOpen Access
    A multiscale chemo-electro-mechanical skeletal muscle model to analyze muscle contraction and force generation for different muscle fiber arrangements
    (2014) Heidlauf, Thomas; Röhrle, Oliver
    The presented chemo-electro-mechanical skeletal muscle model relies on a continuum-mechanical formulation describing the muscle's deformation and force generation on the macroscopic muscle level. Unlike other three-dimensional models, the description of the activation-induced behavior of the mechanical model is entirely based on chemo-electro-mechanical principles on the microscopic sarcomere level. Yet, the multiscale model reproduces key characteristics of skeletal muscles such as experimental force-length and force-velocity data on the macroscopic whole muscle level. The paper presents the methodological approaches required to obtain such a multiscale model, and demonstrates the feasibility of using such a model to analyze differences in the mechanical behavior of parallel-fibered muscles, in which the muscle fibers either span the entire length of the fascicles or terminate intrafascicularly. The presented results reveal that muscles, in which the fibers span the entire length of the fascicles, show lower peak forces, more dispersed twitches and fusion of twitches at lower stimulation frequencies. In detail, the model predicted twitch rise times of 38.2 ms and 17.2 ms for a 12 cm long muscle, in which the fibers span the entire length of the fascicles and with twelve fiber compartments in series, respectively. Further, the twelve-compartment model predicted peak twitch forces that were 19 % higher than in the single-compartment model. The analysis of sarcomere lengths during fixed-end single twitch contractions at optimal length predicts rather small sarcomere length changes. The observed lengths range from 75 to 111 % of the optimal sarcomere length, which corresponds to a region with maximum filament overlap. This result suggests that stability issues resulting from activation-induced stretches of non-activated sarcomeres are unlikely in muscles with passive forces appearing at short muscle length.
  • Thumbnail Image
    ItemOpen Access
    Numerical study of the stress state on the oral mucosa and abutment tooth upon insertion of partial dentures in the mandible
    (2022) Ramakrishnan, Anantha Narayanan; Röhrle, Oliver; Ludtka, Christopher; Varghese, Roshan; Koehler, Josephine; Kiesow, Andreas; Schwan, Stefan
    The introduction of a removable partial denture onto the dental arch significantly influences the mechanical stress characteristics of both the jawbone and oral mucosa. The aim of this study was to analyze the stress state caused by biting forces upon insertion of partial dentures into the assembly, and to understand the influence of the resulting contact pressure on its retention behavior. For this purpose, a numerical model of a removable partial denture is proposed based on 3D models developed using computer tomography data of the jawbone and the removable partial denture. The denture system rests on the oral mucosa surface and three abutment teeth. The application of bite forces on the denture generated a stick condition on the loaded regions of the denture‐oral mucosa interface, which indicates positive retention of the denture onto the oral mucosa surface. Slip and negative retention were observed in the regions of the contact space that were not directly loaded. The contact pressures observed in the regions of the oral mucosa in contact with the denture were below the clinical pressure pain threshold value for soft tissue, which potentially lowers the risk of pain being experienced by denture users. Further, the variation of the retention behavior and contact pressures across different regions of the denture assembly was observed. Thus, there is a need for adhesives or restraining mechanisms for the denture system in order to avoid bending and deformation of sections of the denture as a consequence of the applied bite force.
  • Thumbnail Image
    ItemOpen Access
    Optimizing NV magnetometry for magnetoneurography and magnetomyography applications
    (2023) Zhang, Chen; Zhang, Jixing; Widmann, Matthias; Benke, Magnus; Kübler, Michael; Dasari, Durga; Klotz, Thomas; Gizzi, Leonardo; Röhrle, Oliver; Brenner, Philipp; Wrachtrup, Jörg
    Magnetometers based on color centers in diamond are setting new frontiers for sensing capabilities due to their combined extraordinary performances in sensitivity, bandwidth, dynamic range, and spatial resolution, with stable operability in a wide range of conditions ranging from room to low temperatures. This has allowed for its wide range of applications, from biology and chemical studies to industrial applications. Among the many, sensing of bio-magnetic fields from muscular and neurophysiology has been one of the most attractive applications for NV magnetometry due to its compact and proximal sensing capability. Although SQUID magnetometers and optically pumped magnetometers (OPM) have made huge progress in Magnetomyography (MMG) and Magnetoneurography (MNG), exploring the same with NV magnetometry is scant at best. Given the room temperature operability and gradiometric applications of the NV magnetometer, it could be highly sensitive in the pT/Hz-range even without magnetic shielding, bringing it close to industrial applications. The presented work here elaborates on the performance metrics of these magnetometers to the state-of-the-art techniques by analyzing the sensitivity, dynamic range, and bandwidth, and discusses the potential benefits of using NV magnetometers for MMG and MNG applications.
  • «
  • 1 (current)
  • 2
  • »
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart