Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Rahman, Saidur"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Coolability of corium debris under severe accident conditions in light water reactors
    (2013) Rahman, Saidur; Laurien, Eckart (Prof. Dr.-Ing. habil.)
    The debris bed which may be formed in different stages of a severe accident will be hot and heated by decay heat from the radioactive fission products. In order to establish a steady state of long-term cooling, this hot debris needs to be quenched at first. If quenching by water ingression into the dry bed is not rapid enough then heat-up by decay heat in still dry regions may again yield melting. Thus, chances of coolability must be investigated considering quenching against heat-up due to decay heat, in the context of reactor safety research. As a basis of the present investigations, models for simulation of two phase flow through porous medium were already available in the MEWA code, being under development at IKE. The objective of this thesis is to apply the code in essential phases of severe accidents and to investigate the chances, options and measures for coolability. Further, within the tasks, improvements to remove weaknesses in modeling and implementation of extensions concerning missing parts are included. It was identified previously that classical models without explicit considering the interfacial friction, can predict dryout heat flux (DHF) well under top fed condition but under-predict DHF values under bottom flooding conditions. Tung & Dhir introduced an interfacial friction term in their model, but this model has deficits for smaller particles considered as relevant for reactor conditions. Therefore, some modification of Tung & Dhir model is proposed in the present work to extent it for smaller particles. A significant improvement with the new friction description (Modified Tung & Dhir, MTD) is obtained considering the aim of a unified description for both top and bottom flooding conditions and for broad bandwidth of bed conditions. Calculations for reactor conditions are carried out in order to explore whether or to which degree coolability can be concluded, how strong the trend to coolability is and where major limits occur. The general result from the various calculations in this work is that there exist significant cooling margins and strong trends to coolability which is achieved due to multidimensional cooling options, especially lateral and bottom ingression of water, established in the core region through an intact rod or bypass region, in the lower head through the wall and in the cavity due to the shape (heap) of the bed. These cooling options together with cooling effects of steam flow through a hot dry zone provide mechanisms to facilitate and support quenching processes. Limits also have been obtained, mainly with significant piling up of particles, cake parts with very low porosities and bed with very small particles. The initial temperature distribution inside the bed has a major influence on the coolability behavior of the bed, no matter if the bed is located in the lower head or in the flooded cavity. Previously, quenching calculations were only possible for given debris configurations starting from assumed initial temperatures. However, assuming the whole bed at a uniform initial temperature strongly misses the real process in which settling of partly solidified melt drops occurs simultaneously with water inflow and quenching. Therefore, in the frame of this work, the MEWA models have been extended i.e. coupled to jet breakup and mixing model (JEMI) to treat the combined process. This improved the capabilities of realistic analysis significantly and showed significant effects on cooling in the calculations. Another important step for the improvement of overall modeling of coolability is undertaken by introducing the porosity formation in liquid melt layers through the supply of water from the bottom (COMET concept) in the MEWA model. The related modeling is implemented for situations where liquid melt arrives un-fragmented at the cavity floor due to incomplete breakup of melt.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart