Browsing by Author "Rechkemmer, Yvonne"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Open Access Spectroscopic investigations of the magnetic anisotropy of lanthanide- and cobalt-based molecular nanomagnets(2016) Rechkemmer, Yvonne; Slageren, Joris van (Prof. Dr.)Single-molecule magnets are metal complexes exhibiting an energy barrier for spin reversal, leading to magnetic bistability and slow relaxation of the magnetization. Their potential for practical applications such as high-density magnetic data storage was recognized early on and with the goal of achieving high energy barriers, different kinds of single-molecule magnets have been synthesized. The quadratic dependence of the barrier height on the spin motivated chemists to synthesize metal complexes with very high total spins; however, with limited success. It was shown that high spins come along with low anisotropies and increased interest thus focused on the synthesis and investigation of (mononuclear) complexes of highly anisotropic metal centers, e.g. lanthanide or cobalt complexes. Although rather high energy barriers can be achieved in such systems, practical application remains problematic and has not been realized yet. Reasons are for example the lack of rational design criteria and the complex interplay of different magnetic relaxation pathways. The aim of this work was therefore the comprehensive magnetic and spectroscopic investigation of selected molecular lanthanide and cobalt compounds in order to obtain a deeper insight into the correlation of molecular and electronic structures as well as the corresponding magnetic properties. The applied spectroscopic methods included electron paramagnetic resonance spectroscopy, far-infrared spectroscopy and optical methods. Special emphasis was placed on magnetic circular dichroism (MCD) spectroscopy, which served as a main tool for electronic structure determination. However, since the MCD-spectrometer was not part of the available experimental equipment at the University of Stuttgart, its design, setup and characterization were the first part of this work. In the further course of this work MCD-spectroscopy was employed for the electronic structure determination of selected lanthanide and cobalt compounds. The studied lanthanide compounds were literature-known molecular tetra-carbonates of erbium (1-Er) and dysprosium (1-Dy). Detailed magnetometric studies showed that both 1-Er and 1-Dy are field-induced single-molecule magnets; however, 1-Er and 1-Dy show significant differences in their magnetic relaxation behavior. The magnetic studies were complemented by detailed spectroscopic investigations.The combination of far-infrared-, luminescence- and MCD-spectroscopy allowed for the experimental determination of 48 energy levels for 1-Er and 55 levels for 1-Dy, which built the foundation for the subsequent crystal field analysis and electronic structure determination. In addition, the results of EPR-spectroscopic studies were used for fine-tuning and verifying the respectively determined crystal field parameters. Calculating the magnetic dipole strengths for transitions between the relevant states led to a quantitative understanding of the magnetic relaxation pathways. Besides the investigation of lanthanide compounds, this thesis deals with two classes of cobalt complexes. The first class comprises mononuclear complexes in which one Co(II) ion is ligated by the nitrogen donors of two doubly deprotonated 1,2-bis(methanesulfonamido)-benzene-ligands. Rather acute N-Co-N bite angles indicate strong deviations from ideal tetrahedral symmetry. The static magnetic properties hint at very high energy barriers for spin reversal and with the help of far-infrared spectroscopy, largely negative axial zero-field splitting parameters were determined. The corresponding energy barriers belong to the highest ever reported for 3d-transition metal complexes and investigating the dynamic magnetic properties confirmed single-molecule magnet behavior. The unique magnetic properties were fully explained by analyzing spectroscopic results. The MCD-spectra showed intense signals that were assigned to spin-allowed d-d-transitions. Subsequent crystal field analysis revealed that the strong axial crystal field generated by the ligands leads to a large splitting of the electronic terms and thus in turn to a relatively small energy gap between the electronic ground state and the first excited state. The resulting increase in second-order spin-orbit coupling explains the high energy barriers observed in the studied complexes. The second class of cobalt compounds studied in this work included dimers of distorted octahedrally coordinated Co(II) ions bridged by symmetrical or asymmetrical quinone based bridging ligands. The main focus of investigation lay on the impact of the bridging ligand on the magnetic coupling between the cobalt centers. Thus, the magnetic properties of the complexes were studied with the help of static susceptibility and magnetization measurements and analyzed by means of different models. Depending on the bridging ligand, different signs for the exchange coupling constants were found. The varying signs can be explained by different relative contributions of possible exchange paths, influenced by the different substituents at the bridging ligands or slight geometry differences. The observations indicate that electron withdrawing substituents favor ferromagnetic couplings, which are preferred in the context of molecular magnetism. All in all, it can be concluded that this work provides a contribution to the deeper understanding of the features relevant for single-molecule magnets. The electronic structure determination for selected lanthanide and cobalt complexes applying advanced magnetometric and spectroscopic techniques not only led to an understanding of the static and dynamic magnetic properties but also allowed for the development of design criteria and new approaches for improved single-molecule magnets in the future.