Browsing by Author "Renninger, Stephan"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access CHEMampere : technologies for sustainable chemical production with renewable electricity and CO2, N2, O2, and H2O(2022) Klemm, Elias; Lobo, Carlos M. S.; Löwe, Armin; Schallhart, Verena; Renninger, Stephan; Waltersmann, Lara; Costa, Rémi; Schulz, Andreas; Dietrich, Ralph‐Uwe; Möltner, Lukas; Meynen, Vera; Sauer, Alexander; Friedrich, K. AndreasThe chemical industry must become carbon neutral by 2050, meaning that process‐, energy‐, and product‐related CO2 emissions from fossil sources are completely suppressed. This goal can only be reached by using renewable energy, secondary raw materials, or CO2 as a carbon source. The latter can be done indirectly through the bioeconomy or directly by utilizing CO2 from air or biogenic sources (integrated biorefinery). Until 2030, CO2 waste from fossil‐based processes can be utilized to curb fossil CO2 emissions and reach the turning point of global fossil CO2 emissions. A technology mix consisting of recycling technologies, white biotechnology, and carbon capture and utilization (CCU) technologies is needed to achieve the goal of carbon neutrality. In this context, CHEMampere contributes to the goal of carbon neutrality with electricity‐based CCU technologies producing green chemicals from CO2, N2, O2, and H2O in a decentralized manner. This is an alternative to the e‐Refinery concept, which needs huge capacities of water electrolysis for a centralized CO2 conversion with green hydrogen, whose demand is expected to rise dramatically due to the decarbonization of the energy sector, which would cause a conflict of use between chemistry and energy. Here, CHEMampere's core reactor technologies, that is, electrolyzers, plasma reactors, and ohmic resistance heating of catalysts, are described, and their technical maturity is evaluated for the CHEMampere platform chemicals NH3, NOx, O3, H2O2, H2, CO, and CxHyOz products such as formic acid or methanol. Downstream processing of these chemicals is also addressed by CHEMampere, but it is not discussed here.Item Open Access Techno-economic potential of plasma-based CO2 splitting in power-to-liquid plants(2023) Kaufmann, Samuel Jaro; Rößner, Paul; Renninger, Stephan; Lambarth, Maike; Raab, Moritz; Stein, Jan; Seithümmer, Valentin; Birke, Kai PeterMitigating climate change requires the development of technologies that combine energy and transport sectors. One of them is the production of sustainable fuels from electricity and carbon dioxide (CO2) via power-to-liquid (PtL) plants. As one option for splitting CO2, plasma-based processes promise a high potential due to their flexibility, scalability, and theoretically high efficiencies. This work includes a modeling and techno-economic analysis. A crucial element is the process of the joint project PlasmaFuel, in which two plasma technologies are included in a PtL plant to produce synthetically sulfur-free marine diesel. The results are divided into three scenarios, which differ in the use of different boundary conditions and thus represent different degrees of technology development. The evaluation results in process efficiencies from 16.5% for scenario 2018/20 to 27.5% for scenario 2050, and net production costs between EUR 8.5/L and EUR 3.5/L. Furthermore, the techno-economic potential is mapped in order to open up development steps in the direction of costs below EUR 2.0/L. The present work allows statements regarding system integration and the industrial use of the plasma-based process.; moreover, conclusions can be drawn towards the most important levers in terms of process optimization.Item Open Access Towards high efficiency CO2 utilization by glow discharge plasma(2021) Renninger, Stephan; Rößner, Paul; Stein, Jan; Lambarth, Maike; Birke, Kai PeterPlasma technology reaches rapidly increasing efficiency in catalytic applications. One such application is the splitting reaction of CO2 to oxygen and carbon monoxide. This reaction could be a cornerstone of power-to-X processes that utilize electricity to produce value-added compounds such as chemicals and fuels. However, it poses problems in practice due to its highly endothermal nature and challenging selectivity. In this communication a glow discharge plasma reactor is presented that achieves high energy efficiency in the CO2 splitting reaction. To achieve this, a magnetic field is used to increase the discharge volume. Combined with laminar gas flow, this leads to even energy distribution in the working gas. Thus, the reactor achieves very high energy efficiency of up to 45% while also reaching high CO2 conversion efficiency. These results are briefly explained and then compared to other plasma technologies. Lastly, cutting edge energy efficiencies of competing technologies such as CO2 electrolysis are discussed in comparison.