Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Roge, Swapnil Sunil"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Digital self-interference cancellation using FPGA for in-band full-duplex radios
    (2023) Roge, Swapnil Sunil
    Conventionally, the transmission and the reception of signals in a particular wireless communication system is performed using the half-duplex method, wherein the transmitter and the receiver signals are either time-multiplexed or frequency-multiplexed. However, in case of an in-band full-duplex system, the bidirectional communication of signals is performed simultaneously in the same frequency band, which improves the spectral efficiency of these systems by a factor of two as compared to the traditional half-duplex systems. Therefore, the in-band full-duplex communication systems can double the data rate provided by the half-duplex communication systems, thereby making the former a matter of interest across the wireless research community. However, the in-band full-duplex systems have theirownset of disadvantages. The major challenge is the self-interference imposed by the high-power transmitter signal on the incoming low-power receiver signal, which further degrades the latter and negatively impacts its estimation. Out of the various methodologies to mitigate the self-interference from the receiver signal, this work focuses on the digital self-interference cancellation techniques. In this thesis, the effects of the self-interference signal on the receiver signal are examined. Furthermore, the different digital self-interference cancellation methods employed for suppressing the self-interference are comparatively analysed. Finally, the field-programmable gate array based implementation of the various digital self-interference cancellation algorithms and their respective performance results are presented as well.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart