Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Rothermel, Kurt (Prof. Dr. rer. nat. Dr. h. c.)"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Automated composition of adaptive pervasive applications in heterogeneous environments
    (2012) Schuhmann, Stephan Andreas; Rothermel, Kurt (Prof. Dr. rer. nat. Dr. h. c.)
    Distributed applications for Pervasive Computing represent a research area of high interest. Configuration processes are needed before the application execution to find a composition of components that provides the required functionality. As dynamic pervasive environments and device failures may yield unavailability of arbitrary components and devices at any time, finding and maintaining such a composition represents a nontrivial task. Obviously, many degrees of decentralization and even completely centralized approaches are possible in the calculation of valid configurations, spanning a wide spectrum of possible solutions. As configuration processes produce latencies which are noticed by the application user as undesired waiting times, configurations have to be calculated as fast as possible. While completely distributed configuration is inevitable in infrastructure-less Ad Hoc scenarios, many realistic Pervasive Computing environments are located in heterogeneous environments, where additional computation power of resource-rich devices can be utilized by centralized approaches. However, in case of strongly heterogeneous pervasive environments including several resource-rich and resource-weak devices, both centralized and decentralized approaches may lead to suboptimal results concerning configuration latencies: While the resource-weak devices may be bottlenecks for decentralized configuration, the centralized approach faces the problem of not utilizing parallelism. Most of the conducted projects in Pervasive Computing only focus on one specific type of environment: Either they concentrate on heterogeneous environments, which rely on additional infrastructure devices, leading to inapplicability in infrastructure-less environments. Or they address homogeneous Ad Hoc environments and treat all involved devices as equal, which leads to suboptimal results in case of present resource-rich devices, as their additional computation power is not exploited. Therefore, in this work we propose an advanced comprehensive adaptive approach that particularly focuses on the efficient support of heterogeneous environments, but is also applicable in infrastructure-less homogeneous scenarios. We provide multiple configuration schemes with different degrees of decentralization for distributed applications, optimized for specific scenarios. Our solution is adaptive in a way that the actual scheme is chosen based on the current system environment and calculates application compositions in a resource-aware efficient manner. This ensures high efficiency even in dynamically changing environments. Beyond this, many typical pervasive environments contain a fixed set of applications and devices that are frequently used. In such scenarios, identical resources are part of subsequent configuration calculations. Thus, the involved devices undergo a quite similar configuration process whenever an application is launched. However, starting the configuration from scratch every time not only consumes a lot of time, but also increases communication overhead and energy consumption of the involved devices. Therefore, our solution integrates the results from previous configurations to reduce the severity of the configuration problem in dynamic scenarios. We prove in prototypical real-world evaluations as well as by simulation and emulation that our comprehensive approach provides efficient automated configuration in the complete spectrum of possible application scenarios. This extensive functionality has not been achieved by related projects yet. Thus, our work supplies a significant contribution towards seamless application configuration in Pervasive Computing.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart