Browsing by Author "Rudolph, Stephan (Priv.Doz. Dr.-Ing.)"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Open Access Application-specific UML profiles for multidisciplinary product data integration(2011) Reichwein, Axel; Rudolph, Stephan (Priv.Doz. Dr.-Ing.)This thesis examines the suitability of the UnifiedModeling Language (UML) to establish a central product model for multidisciplinary product data integration. Computer-aided product design involves the use of specialized discipline-specific software applications in order to model and simulate various product aspects. Dependencies between models are thereby frequent as the same product information often appears redundantly in various engineering models. In addition, dependencies exist due to relationships between distinct features of various models. As a result, model modifications frequently require the update of dependent models. Data consistency between models is achieved automatically through model-to-model data exchange software. The use of a central product model enables to reduce the required number of data exchange connections. Central product models store product information which is spread across several models and achieve data consistency through data exchange connections between themselves and specific models as in a hub-and-spoke network. Central product models are especially useful for automatic data consistency in design scenarios which include a high number of inter-model dependencies and model modifications. The integration of geometry and therefrom derived models such as structural analysis or computational fluid dynamics models has already been successfully addressed in numerous central product models. However, the multidisciplinary integration of more diverse models, such as geometric, software, controller and multibody system models, currently presents a challenge. Although several central product models have been developed for multidisciplinary design, none has yet gained, in contrast to geometry-focused central product models, wide acceptance nor reached the status of an international standard. The unmanageable high number of diverse discipline- and application-specific modeling concepts hinders the development of a standardized holistic central product representation. This thesis investigates the possibility of establishing an interdisciplinary central product model based on the common modular structure of models from various disciplines. Most models which are edited with current state-of-the-art software applications are composed of modular components in order to support the exchange and reuse of model information. Models from different disciplines therefore share common modeling concepts for the specification of modular model components. However, there is yet no overarching modeling standard to describe the common characteristics of modular model components from various disciplines. Object-oriented modeling concepts currently mainly describe software modules called objects. Object-oriented modeling concepts are generic and can be used to represent modular components in general. The Unified Modeling Language (UML) has been since its emergence in 1997 the de facto standard for object-oriented modeling. This thesis examines the use of the object-oriented modeling concepts of the UML to uniformly describe widely used application-specific geometric, dynamic and multibody system models in a central product model. Application-specific model information was represented in UML through generic UML modeling concepts in combination with lightweight UML extensions in the form of stereotypes. UML profiles regrouped stereotypes which corresponded to a specific modeling application. The automatic translation of UML model information into the specific models and vice versa was implemented in order to test and validate the application-specific UML profiles. The UML-based central product model was used in several test cases to automatically generate consistent models for the simulation and evaluation of various product configurations. The test cases included models for the simulation of slider-crank mechanisms, the evaluation of cabin pressure control systems, the design of conveyor system configurations, the evaluation of satellite configurations and the generation of customized aircraft geometry. The workflows within the test cases included the automatic creation and modification of UML models as well as the invocation of data exchange connections. The workflows were described in executable UML activity diagrams or Java programs. The thesis demonstrates that the UML can be used beyond conventional software modeling to establish a central holistic product representation. The modeling concepts of geometric, dynamic and multibody system models were translated mostly according to one-to-one mappings into corresponding UML modeling concepts with their respective stereotype. As a result, the specific model information is easily recognizable in the UML-based central product model. Furthermore, the use of a UML-based central product model is facilitated for the many modelers who are already familiar with the widespread and standardized UML modeling language.