Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Schalberger, Patrick"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    High‐performance MEMS shutter display with metal‐oxide thin‐film transistors and optimized MEMS element
    (2023) Al Nusayer, Sheikh Abdullah; Schalberger, Patrick; Baur, Holger; Kleber, Florian; Fruehauf, Norbert
    Active matrix prestressed microelectromechanical shutter displays enable outstanding optical properties as well as robust operating performance. The microelectromechanical systems (MEMS) shutter elements have been optimized for higher light outcoupling efficiency with lower operation voltage and higher pixel density. The MEMS elements have been co-fabricated with self-aligned metal-oxide thin-film transistors (TFTs). Several optimizations were required to integrate MEMS process without hampering the performance of both elements. The optimized display process requires only seven photolithographic masks with ensuring proper compatibility between MEMS shutter and metal-oxide TFT process.
  • Thumbnail Image
    ItemOpen Access
    Ultraviolet photodetectors and readout based on a‐IGZO semiconductor technology
    (2023) Schellander, Yannick; Winter, Marius; Schamber, Maurice; Munkes, Fabian; Schalberger, Patrick; Kuebler, Harald; Pfau, Tilman; Fruehauf, Norbert
    In this work, real-time ultraviolet photodetectors are realized through metal–semiconductor–metal (MSM) structures. Amorphous indium gallium zinc oxide (a-IGZO) is used as semiconductor material and gold as metal electrodes. The readout of an individual sensor is implemented by a transimpedance amplifier (TIA) consisting of an all-enhancement a-IGZO thin-film transistor (TFT) operational amplifier and a switched capacitor (SC) as feedback resistance. The photosensor and the transimpedance amplifier are both manufactured on glass substrates. The measured photosensor possesses a high responsivity R, a low response time tRES, and a good noise equivalent power value NEP.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart