Browsing by Author "Scherer, Carsten W. (Prof. Dr.)"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access A complete analysis and design framework for linear impulsive and related hybrid systems(2022) Holicki, Tobias; Scherer, Carsten W. (Prof. Dr.)We establish a framework for systematically analyzing and designing output-feedback controllers for linear impulsive and related hybrid systems that might even be affected by various types of uncertainties. In particular, the framework encompasses uncertain switched and sampled-data systems as well as networked systems with switching communication topologies. The framework is based on recently developed convex criteria involving a so-called clock for analyzing impulsive systems under dwell-time constraints. We elaborate on the extension of those criteria for dynamic output-feedback controller synthesis by means of convex optimization and generalize the so-called dual iteration to impulsive systems. The latter originally and still constitutes a promising heuristic procedure for the challenging and non-convex design of static output-feedback controllers for standard linear time-invariant systems. Moreover, for uncertain impulsive systems as modeled in terms of linear fractional representations, we generalize the nominal analysis criteria by providing novel robust analysis conditions based on a novel time-domain and clock-dependent formulation of integral quadratic constraints. Finally, by combining the insights on nominal synthesis and robust analysis, we are able to tackle challenging output-feedback designs of practical relevance, such as the design of gain-scheduled, robust or robust gain-scheduled controllers for impulsive systems. Most of the obtained analysis and synthesis conditions involve infinite-dimensional (differential) linear matrix inequalities which can be numerically solved by using relaxation methods based on, e.g., linear splines, B-splines or matrix sum-of-squares that we discuss as well.Item Open Access From classical absolute stability tests towards a comprehensive robustness analysis(2017) Fetzer, Matthias; Scherer, Carsten W. (Prof. Dr.)In this thesis, we are concerned with the stability and performance analysis of feedback interconnections comprising a linear (time-invariant) system and an uncertain component subject to external disturbances. Building on the framework of integral quadratic constraints (IQCs), we aim at verifying stability of the interconnection using only coarse information about the input-output behavior of the uncertainty.