Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Scheurer, Stefania"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    A deep learning approach for large-scale groundwater heat pump temperature prediction
    (2022) Scheurer, Stefania
    Heating and cooling buildings is one of the most energy-intensive aspects of modern life. To minimize the impact on global warming and decelerate climate change, more efficient and carbon emission-mitigating technologies such as openloop groundwater heat pumps (GWHP) for heating and cooling buildings are being used and quickly adopted. Nowadays, in order to guarantee their optimal use and prevent negative interactions, city planners need to optimize their placement in the urban landscape. This optimization process requires fast models that simulate the effect of a GWHP on the groundwater temperature. Considering a large domain with multiple GWHPs, this work introduces a framework for the groundwater temperature prediction. While using a learned local surrogate model, a convolutional neural network, to predict the local temperature field around every single GWHP, a physics-informed neural network (PINN) is employed afterwards to correct the global initial solution of stitched together local predictions. As the violations of the physical laws described by the underlying partial differential equation(s) are spatially unevenly distributed, two different methods for drawing sampling points, on the basis of which the training of the PINN to correct the global initial solution takes place, are investigated and compared. This work shows that it is possible for a PINN to correct the global initial solution of stitched together local predictions in a domain with multiple GWHPs. However, there are still opportunities to improve the quality and decrease the computational time of the presented framework. The best method for drawing sampling points depends on the scenario and the placement of the GWHPs. Thus, no general statement can be made, which of the two methods is more suitable. This work provides a good basis for further investigation of the presented framework.
  • Thumbnail Image
    ItemOpen Access
    Surrogate-based Bayesian comparison of computationally expensive models : application to microbially induced calcite precipitation
    (2021) Scheurer, Stefania; Schäfer Rodrigues Silva, Aline; Mohammadi, Farid; Hommel, Johannes; Oladyshkin, Sergey; Flemisch, Bernd; Nowak, Wolfgang
    Geochemical processes in subsurface reservoirs affected by microbial activity change the material properties of porous media. This is a complex biogeochemical process in subsurface reservoirs that currently contains strong conceptual uncertainty. This means, several modeling approaches describing the biogeochemical process are plausible and modelers face the uncertainty of choosing the most appropriate one. The considered models differ in the underlying hypotheses about the process structure. Once observation data become available, a rigorous Bayesian model selection accompanied by a Bayesian model justifiability analysis could be employed to choose the most appropriate model, i.e. the one that describes the underlying physical processes best in the light of the available data. However, biogeochemical modeling is computationally very demanding because it conceptualizes different phases, biomass dynamics, geochemistry, precipitation and dissolution in porous media. Therefore, the Bayesian framework cannot be based directly on the full computational models as this would require too many expensive model evaluations. To circumvent this problem, we suggest to perform both Bayesian model selection and justifiability analysis after constructing surrogates for the competing biogeochemical models. Here, we will use the arbitrary polynomial chaos expansion. Considering that surrogate representations are only approximations of the analyzed original models, we account for the approximation error in the Bayesian analysis by introducing novel correction factors for the resulting model weights. Thereby, we extend the Bayesian model justifiability analysis and assess model similarities for computationally expensive models. We demonstrate the method on a representative scenario for microbially induced calcite precipitation in a porous medium. Our extension of the justifiability analysis provides a suitable approach for the comparison of computationally demanding models and gives an insight on the necessary amount of data for a reliable model performance.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart