Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Schlaich, Alexander"

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    The presence of a wall enhances the probability for ring‐closing metathesis : insights from classical polymer theory and atomistic simulations
    (2020) Tischler, Ingo; Schlaich, Alexander; Holm, Christian
    The probability distribution of chain ends meeting when one end of the polymer is fixed to a certain distance to a reflecting wall is investigated. For an ideal polymer chain the probability distribution can be evaluated analytically via classic polymer theory. These analytical predictions are compared to atomistic MD simulations of one tethered alkane chain close to the wall. The results demonstrate that a confining wall can lead to a significant increase in the return probability for the chain ends, and thus, can increase the occurrence of ring‐closing reactions. It is further demonstrated that the excess return probability shows a maximum at a certain distance, thereby yielding an optimal catalyst position in the ring‐closing reaction.
  • Thumbnail Image
    ItemOpen Access
    Renormalized charge and dielectric effects in colloidal interactions : a numerical solution of the nonlinear Poisson-Boltzmann equation for unknown boundary conditions
    (2023) Schlaich, Alexander; Tyagi, Sandeep; Kesselheim, Stefan; Sega, Marcello; Holm, Christian
    The Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, introduced more than 70 years ago, is a hallmark of colloidal particle modeling. For highly charged particles in the dilute regime, it is often supplemented by Alexander’s prescription (Alexander et al. in J Chem Phys 80:5776, 1984) for using a renormalized charge. Here, we solve the problem of the interaction between two charged colloids at finite ionic strength, including dielectric mismatch effects, using an efficient numerical scheme to solve the nonlinear Poisson-Boltzmann (NPB) equation with unknown boundary conditions. Our results perfectly match the analytical predictions for the renormalized charge by Trizac and coworkers (Aubouy et al. in J Phys A 36:5835, 2003). Moreover, they allow us to reinterpret previous molecular dynamics (MD) simulation results by Kreer et al. (Phys Rev E 74:021401, 2006), rendering them now in agreement with the expected behavior. We furthermore find that the influence of polarization becomes important only when the Debye layers overlap significantly.
  • Thumbnail Image
    ItemOpen Access
    Water structuring induces nonuniversal hydration repulsion between polar surfaces : quantitative comparison between molecular simulations, theory, and experiments
    (2024) Schlaich, Alexander; Daldrop, Jan O.; Kowalik, Bartosz; Kanduč, Matej; Schneck, Emanuel; Netz, Roland R.
    Polar surfaces in water typically repel each other at close separations, even if they are charge-neutral. This so-called hydration repulsion balances the van der Waals attraction and gives rise to a stable nanometric water layer between the polar surfaces. The resulting hydration water layer is crucial for the properties of concentrated suspensions of lipid membranes and hydrophilic particles in biology and technology, but its origin is unclear. It has been suggested that surface-induced molecular water structuring is responsible for the hydration repulsion, but a quantitative proof of this water-structuring hypothesis is missing. To gain an understanding of the mechanism causing hydration repulsion, we perform molecular simulations of different planar polar surfaces in water. Our simulated hydration forces between phospholipid bilayers agree perfectly with experiments, validating the simulation model and methods. For the comparison with theory, it is important to split the simulated total surface interaction force into a direct contribution from surface-surface molecular interactions and an indirect water-mediated contribution. We find the indirect hydration force and the structural water-ordering profiles from the simulations to be in perfect agreement with the predictions from theoretical models that account for the surface-induced water ordering, which strongly supports the water-structuring hypothesis for the hydration force. However, the comparison between the simulations for polar surfaces with different headgroup architectures reveals significantly different decay lengths of the indirect water-mediated hydration-force, which for laterally homogeneous water structuring would imply different bulk-water properties. We conclude that laterally inhomogeneous water ordering, induced by laterally inhomogeneous surface structures, shapes the hydration repulsion between polar surfaces in a decisive manner. Thus, the indirect water-mediated part of the hydration repulsion is caused by surface-induced water structuring but is surface-specific and thus nonuniversal.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart