Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Scholbrock, Andrew"

Filter results by typing the first few letters
Now showing 1 - 4 of 4
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    An adaptive data processing technique for lidar-assisted control to bridge the gap between lidar systems and wind turbines
    (2015) Schlipf, David; Fleming, Paul; Raach, Steffen; Scholbrock, Andrew; Haizmann, Florian; Krishnamurthy, Raghu; Boquet, Matthieu; Cheng, Po Wen
    This paper presents first steps toward an adaptive lidar data processing technique crucial for lidar-assisted control in wind turbines. The prediction time and the quality of the wind preview from lidar measurements depend on several factors and are not constant. If the data processing is not continually adjusted, the benefit of lidar-assisted control cannot be fully exploited or can even result in harmful control action. An online analysis of the lidar and turbine data is necessary to continually reassess the prediction time and lidar data quality. In this work, a structured process to develop an analysis tool for the prediction time and a new hardware setup for lidar-assisted control are presented. The tool consists of an online estimation of the rotor effective wind speed from lidar and turbine data and the implementation of an online cross-correlation to determine the time shift between both signals. Further, we present initial results from an ongoing campaign in which this system was employed for providing lidar preview for feedforward pitch control.
  • Thumbnail Image
    ItemOpen Access
    Direct speed control using LIDAR and turbine data
    (2013) Schlipf, David; Fleming, Paul; Kapp, Stefan; Scholbrock, Andrew; Haizmann, Florian; Belen, Fred; Wright, Alan; Cheng, Po Wen
    LIDAR systems are able to provide preview information of the wind speed in front of wind turbines. One proposed use of this information is to increase the energy capture of the turbine by adjusting the rotor speed directly to maintain operation at the optimal tip-speed ratio, a technique referred to as Direct Speed Control (DSC). Previous work has indicated that for large turbines the marginal benefit of the direct speed controller in terms of increased power does not compensate for the increase of the shaft loads. However, the technique has not yet been adequately tested to make this determination conclusively. Further, it is possible that applying DSC to smaller turbines could be worthwhile because of the higher rotor speed fluctuations and the small rotor inertia. This paper extends the previous work on direct speed controllers. A DSC is developed for a 600 kW experimental turbine and is evaluated theoretically and in simulation. Because the actual turbine has a mounted LIDAR, data collected from the turbine and LIDAR during operation are used to perform a hybrid simulation. This technique allows a realistic simulation to be performed, which provides good agreement with theoretical predictions.
  • Thumbnail Image
    ItemOpen Access
    Field testing of feedforward collective pitch control on the CART2 using a nacelle-based lidar scanner
    (2012) Schlipf, David; Fleming, Paul; Haizmann, Florian; Scholbrock, Andrew; Hofsäß, Martin; Wright, Alan; Cheng, Po Wen
    This work presents the first results from a field test to proof the concept of LIDAR assisted collective pitch control using a scanning LIDAR device installed on the nacelle of a research turbine. The purpose of the campaign was to show that a reduction of rotor speed variation is feasible with a feedforward update without changing the feedback controller. Although only a small amount of data could be collected, positive effects can be observed not only on the rotor speed but also on tower, blade and shaft loads in the case that the correlation of the wind preview and the turbine reaction is taken into account.
  • Thumbnail Image
    ItemOpen Access
    Optimization of a feed-forward controller using a CW-lidar system on the CART3
    (2015) Haizmann, Florian; Schlipf, David; Raach, Steffen; Scholbrock, Andrew; Wright, Alan; Slinger, Chris; Medley, John; Harris, Michael; Bossanyi, Ervin; Cheng, Po Wen
    This work presents results from a new field-testing campaign conducted on the three-bladed Controls Advanced Research Turbine (CART3) at the National Renewable Energy Laboratory in 2014. Tests were conducted using a commercially available, nacelle-mounted continuous-wave lidar system from ZephIR Lidar for the implementation of a lidar-based collective pitch feed-forward controller. During the campaign, the data processing of the lidar system was optimized for higher availability. Furthermore, the optimal scan distance was investigated for the CART3 by means of a spectra-based analytical model and found to match the lidar's capabilities well. Throughout the campaign the predicted correlation between the lidar measurements and the turbine's reaction was confirmed from the measured data. Additionally, the baseline feedback controller's gains were tuned based on a simulation study that included the lidar system to achieve further load reductions. This led to some promising first results, which are presented at the end of this paper.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart