Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Schollenberger, Theresa"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Evaporation-driven density instabilities in saturated porous media
    (2022) Bringedal, Carina; Schollenberger, Theresa; Pieters, G. J. M.; Duijn, C. J. van; Helmig, Rainer
    Soil salinization is a major cause of soil degradation and hampers plant growth. For soils saturated with saline water, the evaporation of water induces accumulation of salt near the top of the soil. The remaining liquid gets an increasingly larger density due to the accumulation of salt, giving a gravitationally unstable situation, where instabilities in the form of fingers can form. These fingers can, hence, lead to a net downward transport of salt. We here investigate the appearance of these fingers through a linear stability analysis and through numerical simulations. The linear stability analysis gives criteria for onset of instabilities for a large range of parameters. Simulations using a set of parameters give information also about the development of the fingers after onset. With this knowledge, we can predict whether and when the instabilities occur, and their effect on the salt concentration development near the top boundary.
  • Thumbnail Image
    ItemOpen Access
    Investigation of different throat concepts for precipitation processes in saturated pore-network models
    (2024) Schollenberger, Theresa; Wolff, Lars von; Bringedal, Carina; Pop, Iuliu Sorin; Rohde, Christian; Helmig, Rainer
    The development of reliable mathematical models and numerical discretization methods is important for the understanding of salt precipitation in porous media, which is relevant for environmental problems like soil salinization. Models on the pore scale are necessary to represent local heterogeneities in precipitation and to include the influence of solution-air-solid interfaces. A pore-network model for saturated flow, which includes the precipitation reaction of salt, is presented. It is implemented in the open-source simulator DuMu X. In this paper, we restrict ourselves to one-phase flow as a first step. Since the throat transmissibilities determine the flow behaviour in the pore network, different concepts for the decreasing throat transmissibility due to precipitation are investigated. We consider four concepts for the amount of precipitation in the throats. Three concepts use information from the adjacent pore bodies, and one employs a pore-throat model obtained by averaging the resolved pore-scale model in a thin-tube. They lead to different permeability developments, which are caused by the different distribution of the precipitate between the pore bodies and throats. We additionally apply two different concepts for the calculation of the transmissibility. One obtains the precipitate distribution from analytical assumptions, the other from a geometric minimization principle using a phase-field evolution equation. The two concepts do not show substantial differences for the permeability development as long as simple pore-throat geometries are used. Finally, advantages and disadvantages of the concepts are discussed in the context of the considered physical problem and a reasonable effort for the implementation and computational costs.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart