Browsing by Author "Schulz, Joachim"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Evaluation of Phase One scan station for analogue aerial image digitisation(2021) Schulz, Joachim; Cramer, Michael; Herbst, TheresaHistorical aerial photographs represent a special cultural asset for preserving information about land cover and land use change in the twentieth century with a high spatial and temporal resolution. A current topic is the digitisation of historical images to make them accessible to a wider range of users and to preserve them from age deterioration. For a photogrammetric evaluation, a high geometric stability and accuracy during the digitization process is required. In this work, the resolving power and geometric quality of a Phase One iXM-MV150F high-performance camera was investigated, which is used at the Landesamt für Geoinformation und Landentwicklung Baden-Württemberg in the project ‘Digitaler Luftbildatlas Baden-Württemberg’ for the digitisation of historical aerial photographs. The resolving power of the system was empirically measured and analysed. The required modulation transfer function was determined using Siemens stars. With this method, the significant influence of the focus setting and deviations of the plane-parallel alignment could be determined. Using a digitised aerial survey of the Vaihingen/Enz test field, the impact of the above-mentioned effects and the influence of the geometry of the scanning camera on the quality of the derived data products was shown in comparison to a photogrammetric scanner. The comparison showed that dedicated photogrammetric scanners still achieve a higher accuracy, even if a high-quality optical system is used for the digitising stand with the document camera. Further investigations are justified to improve the accuracy and stability of digitising the aerial image with a document camera.Item Open Access Helium-electrospray improves sample delivery in X-ray single-particle imaging experiments(2024) Yenupuri, Tej Varma; Rafie-Zinedine, Safi; Worbs, Lena; Heymann, Michael; Schulz, Joachim; Bielecki, Johan; Maia, Filipe R. N. C.Imaging the structure and observing the dynamics of isolated proteins using single-particle X-ray diffractive imaging (SPI) is one of the potential applications of X-ray free-electron lasers (XFELs). Currently, SPI experiments on isolated proteins are limited by three factors: low signal strength, limited data and high background from gas scattering. The last two factors are largely due to the shortcomings of the aerosol sample delivery methods in use. Here we present our modified electrospray ionization (ESI) source, which we dubbed helium-ESI (He-ESI). With it, we increased particle delivery into the interaction region by a factor of 10, for 26 nm-sized biological particles, and decreased the gas load in the interaction chamber corresponding to an 80% reduction in gas scattering when compared to the original ESI. These improvements have the potential to significantly increase the quality and quantity of SPI diffraction patterns in future experiments using He-ESI, resulting in higher-resolution structures.