Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Schulze, Jörg (Prof. Dr. habil)"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Germanium-Zinn Molekularstrahlepitaxie zur Herstellung von L-Band Photodioden
    (2013) Werner, Jens; Schulze, Jörg (Prof. Dr. habil)
    Die wichtigsten Lichtwellenlängen für Telekommunikationssysteme sind momentan 1310 nm und 1550 nm. Dies liegt vor allem an der geringen Dämpfung, der zurzeit verwendeten Glasfasermaterialien, bei diesen Wellenlängen. Um moderne Multiplexverfahren (wie z.B. dem Dichte-Wellenlängen-Multiplex-Verfahren (DWDM)) verwenden zu können werden vor allem Betriebswellenlängen zwischen 1530 nm und 1625 nm, den sogenannten C- und L-Bändern, benötigt. Die dann eingesetzten optoelektronischen Bauelemente müssen ihren Arbeitsbereich ebenfalls in diesen Wellenlängenbereichen haben. Damit Halbleiterbauelemente kostengünstig hergestellt und ebenso für On-Chip Kommunikation eingesetzt werden können, ist eine Realisierung dieser Bauteile auf Silizium notwendig. Silizium ist das Rückgrat der CMOS-Technologie, was vor allem an den Materialkosten und der Verfügbarkeit des Grundmaterials liegt. Somit ist es sinnvoll, dass zukünftige optoelektronische Bauelemente vollständig siliziumkompatibel sind. Das Problem bei der Verwendung von Silizium ist, dass Silizium aufgrund seiner Bandlücke zwar vor allem im Bereich von ultravioletten und nahem Infrarot (~1000 nm) Licht empfindlich ist, jedoch für Wellenlängen von > 1100 nm transparent ist. Eine Ausweitung der optischen Empfindlichkeit kann durch Beimischungen von hohen Anteilen an Germanium (> 90 %) erreicht werden. So konnte vor allem in den letzten Jahrzehnten, durch eine ständig steigende Qualität von Silizium-Germanium-Heterostrukturen, Photosensoren hergestellt werden für den wichtigen Lichtwellenlängenbereich von 1310 nm und 1550 nm. Der Vorteil an Germanium ist dabei, dass es auf Silizium vollständig integrierbar ist. Jedoch ist auch die optische Empfindlichkeit von Germanium bei 1550 nm nicht besonders hoch. Erste Berechnungen in den frühen 90ern Jahren zeigten, dass durch eine Beimischung von Zinn, die optische Empfindlichkeit von Germanium bei 1550 nm erheblich erhöht werden kann und es zudem zu einer Verschiebung der optischen Empfindlichkeit zu größeren Wellenlängen > 1550 nm kommt. Die wesentlichen Probleme bei der Herstellung von Germanium-Zinn-Legierungen sind unter anderem die sehr hohe Gitterfehlpassung von 14,7% zwischen Germanium und Alpha-Zinn, die hohen Segregationseigenschaften von Zinn, sowie die geringe Löslichkeit (<1%) von Zinn in Germanium. Hier setzt diese Arbeit an und soll mögliche Lösungsvarianten für die Herstellung von Germanium-Zinn Legierungen durch das Vorstellen von verschiedenen Wachstumskonzepten, basierend auf dem Verfahren der Molekularstrahlepitaxie, geben. Ein wesentlicher Bestandteil dieser Arbeit ist die Untersuchung von Germanium-Zinn-Legierungen mit Zinnanteilen von bis zu 2,7 %, die mittels eines Tieftemperaturschritts hergestellt wurden. Es wird gezeigt, dass durch das Wachstum bei einer Substrattemperatur von TSub = 85°C die Herstellung von Germanium-Zinn-Legierungen mit homogenem Zinneinbau gelingt. Dabei wurden die hergestellten Schichten sowohl in Hinblick auf die Segregationseigenschaften von Zinn und dem Verspannungszustand der Germanium-Zinn-Schicht untersucht. Aus den experimentellen µ-Ramanspektroskopie-Daten wurde eine Auswertemethode basierend auf der Verschiebung des Ge-Ge-Signals bezüglich des Verspannungszustands und des Zinn-Anteils entwickelt. Damit steht nun eine schnelle, quantitative und nicht zerstörende Untersuchungsmethode für die Germanium-Zinn-Legierungen zur Verfügung. Der Verspannungszustand der Germanium-Zinn-Schichten wird unter anderem durch die Qualität der eingesetzten virtuellen Germanium-Substrate bestimmt. In Untersuchungen der Temperaturstabilität von Germanium-Zinn-Schichten konnte gezeigt werden, dass mit Zinn-Ausscheidungen in Germanium-Zinn-Schichten erst ab einer Temperatur von > 650°C zu rechnen ist. Die Germanium-Zinn-Dioden zeigen die zu erwartende theoretische Verschiebung der optischen Empfindlichkeit zu größeren Wellenlängen und eine Erhöhung der optischen Empfindlichkeit bei 1550 nm im Vergleich zu einer gewöhnlichen Germanium-Diode. Der Vorteil der hergestellten Dioden ist, dass diese nicht nur als Sensor eingesetzt werden können, sondern ebenfalls als Emitter. Dabei strahlt die Diode ebenfalls vermehrt Licht aus im Bereich > 1550 nm als eine vergleichbare Germaniumdiode. Durch den zusätzlichen Aspekt, dass sich bei einem Zinngehalt von ungefähr 6-7 % der indirekte Halbleiter von Germanium zu einem direkten Germanium-Zinn-Halbleiter wandelt, scheint die Herstellung von zukünftigen Silizium basierten Germanium-Zinn-Lasern durchaus möglich. In dieser Arbeit konnte neben neuen Wachstumsmethoden für Germanium-Zinn-Legierungen auch das große Potential von Germanium-Zinn für die Realisierung von optoelektronischen Bauelementen in den Wellenlängenbändern C und L gezeigt werden.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart