Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Schulze, Mathias"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Advancement of segmented cell technology in low temperature hydrogen technologies
    (2020) Biswas, Indro; Sánchez, Daniel G.; Schulze, Mathias; Mitzel, Jens; Kimmel, Benjamin; Gago, Aldo Saul; Gazdzicki, Pawel; Friedrich, K. Andreas
    The durability and performance of electrochemical energy converters, such as fuel cells and electrolysers, are not only dependent on the properties and the quality of the used materials. They strongly depend on the operational conditions. Variations in external parameters, such as flow, pressure, temperature and, obviously, load, can lead to significant local changes in current density, even local transients. Segmented cell technology was developed with the purpose to gain insight into the local operational conditions in electrochemical cells during operation. The operando measurement of the local current density and temperature distribution allows effective improvement of operation conditions, mitigation of potentially critical events and assessment of the performance of new materials. The segmented cell, which can replace a regular bipolar plate in the current state of the technology, can be used as a monitoring tool and for targeted developments. This article gives an overview of the development and applications of this technology, such as for water management or fault recognition. Recent advancements towards locally resolved monitoring of humidity and to current distributions in electrolysers are outlined.
  • Thumbnail Image
    ItemOpen Access
    Temperature reduction as operando performance recovery procedure for polymer electrolyte membrane fuel cells
    (2024) Zhang, Qian; Schulze, Mathias; Gazdzicki, Pawel; Friedrich, Kaspar Andreas
    To efficiently mitigate the reversible performance degradation of polymer electrolyte membrane fuel cells, it is crucial to thoroughly understand recovery effects. In this work, the effect of operando performance recovery by temperature reduction is evaluated. The results reveal that operando reduction in cell temperature from 80 °C to 45 °C yields a performance recovery of 60-70% in the current density range below 1 A cm-2 in a shorter time (1.5 h versus 10.5 h), as opposed to a known and more complex non-operando recovery procedure. Notably, the absolute recovered voltage is directly proportional to the total amount of liquid water produced during the temperature reduction. Thus, the recovery effect is likely attributed to a reorganization/rearrangement of the ionomer due to water condensation. Reduction in the charge transfer and mass transfer resistance is observed after the temperature reduction by electrochemical impedance spectroscopy (EIS) measurement. During non-operando temperature reduction (i.e., open circuit voltage (OCV) hold during recovery instead of load cycling) an even higher recovery efficiency of >80% was achieved.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart