Browsing by Author "Schwarz, Holger"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access Efficient exploratory clustering analyses in large-scale exploration processes(2021) Fritz, Manuel; Behringer, Michael; Tschechlov, Dennis; Schwarz, HolgerClustering is a fundamental primitive in manifold applications. In order to achieve valuable results in exploratory clustering analyses, parameters of the clustering algorithm have to be set appropriately, which is a tremendous pitfall. We observe multiple challenges for large-scale exploration processes. On the one hand, they require specific methods to efficiently explore large parameter search spaces. On the other hand, they often exhibit large runtimes, in particular when large datasets are analyzed using clustering algorithms with super-polynomial runtimes, which repeatedly need to be executed within exploratory clustering analyses. We address these challenges as follows: First, we present LOG-Means and show that it provides estimates for the number of clusters in sublinear time regarding the defined search space, i.e., provably requiring less executions of a clustering algorithm than existing methods. Second, we demonstrate how to exploit fundamental characteristics of exploratory clustering analyses in order to significantly accelerate the (repetitive) execution of clustering algorithms on large datasets. Third, we show how these challenges can be tackled at the same time. To the best of our knowledge, this is the first work which simultaneously addresses the above-mentioned challenges. In our comprehensive evaluation, we unveil that our proposed methods significantly outperform state-of-the-art methods, thus especially supporting novice analysts for exploratory clustering analyses in large-scale exploration processes.Item Open Access Exploiting domain knowledge to address class imbalance and a heterogeneous feature space in multi-class classification(2023) Hirsch, Vitali; Reimann, Peter; Treder-Tschechlov, Dennis; Schwarz, Holger; Mitschang, BernhardReal-world data of multi-class classification tasks often show complex data characteristics that lead to a reduced classification performance. Major analytical challenges are a high degree of multi-class imbalance within data and a heterogeneous feature space, which increases the number and complexity of class patterns. Existing solutions to classification or data pre-processing only address one of these two challenges in isolation. We propose a novel classification approach that explicitly addresses both challenges of multi-class imbalance and heterogeneous feature space together. As main contribution, this approach exploits domain knowledge in terms of a taxonomy to systematically prepare the training data. Based on an experimental evaluation on both real-world data and several synthetically generated data sets, we show that our approach outperforms any other classification technique in terms of accuracy. Furthermore, it entails considerable practical benefits in real-world use cases, e.g., it reduces rework required in the area of product quality control.Item Open Access Improving the processing of decision support queries : strategies for a DSS optimizer(2001) Schwarz, Holger; Wagner, Ralf; Mitschang, BernhardMany decision support applications are built upon data mining and OLAP tools and allow users to answer information requests based on a data warehouse that is managed by a powerful DBMS. In this paper, we focus on tools that generate sequences of SQL statements in order to produce the requested information. Our thorough analysis revealed that many sequences of queries that are generated by commercial tools are not very efficient. An optimized system architecture is suggested for these applications. The main component is a DSS optimizer that accepts pre-viously generated sequences of queries and remodels them according to a set of optimization strategies, before they are executed by the underlying database system. The advantages of this extended architecture are discussed and a couple of appropriate optimization strategies are identified. Experimental results are given, showing that these strategies are appropriate to optimize query sequences of OLAP applications.Item Open Access Integration von Data Mining und Online Analytical Processing : eine Analyse von Datenschemata, Systemarchitekturen und Optimierungsstrategien(2003) Schwarz, Holger; Mitschang, Bernhard (Prof. Dr.-Ing. habil.)Die technischen Möglichkeiten, Daten zu erfassen und dauerhaft zu speichern, sind heute so ausgereift, dass insbesondere in Unternehmen und anderen Organisationen große Datenbestände verfügbar sind. In diesen Datenbeständen, häufig als Data Warehouse bezeichnet, sind alle relevanten Informationen zu den Organisationen selbst, den in ihnen ablaufenden Prozessen sowie deren Interaktion mit anderen Organisationen enthalten. Vielfach stellt die zielgerichtete Analyse der Datenbestände den entscheidenden Erfolgsfaktor für Organisationen dar. Zur Analyse der Daten in einem Data Warehouse sind verschiedenste Ansätze verfügbar und erprobt. Zwei der wichtigsten Vertreter sind das Online Analytical Processing (OLAP) und das Data Mining. Beide setzen unterschiedliche Schwerpunkte und werden bisher in der Regel weitgehend isoliert eingesetzt. In dieser Arbeit wird zunächst gezeigt, dass eine umfassende Analyse der Datenbestände in einem Data Warehouse nur durch den integrierten Einsatz beider Analyseansätze erzielt werden kann. Einzelne Fragestellungen, die sich aus diesem Integrationsbedarf ergeben werden ausführlich diskutiert. Zu den betrachteten Fragestellungen gehört die geeignete Modellierung der Daten in einem Data Warehouse. Bei der Bewertung gängiger Modellierungsansätze fließen insbesondere die Anforderungen ein, die sich durch den beschriebenen Integrationsansatz ergeben. Als Ergebnis wird ein konzeptuelles Datenmodell vorgestellt, das Informationen in einer Weise strukturiert, die für OLAP und Data Mining gleichermaßen geeignet ist. Im Bereich der logischen Modellierung werden schließlich diejenigen Schematypen identifiziert, die die Integration der Analyseansätze geeignet unterstützen. Im nächsten Schritt sind die für Data Mining und OLAP unterschiedlichen Systemarchitekturen Gegenstand dieser Arbeit. Deren umfassende Diskussion ergibt eine Reihe von Defiziten. Dies führt schließlich zu einer erweiterten Systemarchitektur, die die Schwachstellen beseitigt und die angestrebte Integration geeignet unterstützt. Die erweiterte Systemarchitektur weist eine Komponente zur anwendungsunabhängigen Optimierung unterschiedlicher Analyseanwendungen auf. Ein dritter Schwerpunkt dieser Arbeit besteht in der Identifikation geeigneter Optimierungsansätze hierfür. Die Bewertung der Ansätze wird einerseits qualitativ durchgeführt. Andererseits wird das Optimierungspotenzial der einzelnen Ansätze auch auf der Grundlage umfangreicher Messreihen gezeigt.Item Open Access Introducing the enterprise data marketplace : a platform for democratizing company data(2023) Eichler, Rebecca; Gröger, Christoph; Hoos, Eva; Stach, Christoph; Schwarz, Holger; Mitschang, BernhardIn this big data era, multitudes of data are generated and collected which contain the potential to gain new insights, e.g., for enhancing business models. To leverage this potential through, e.g., data science and analytics projects, the data must be made available. In this context, data marketplaces are used as platforms to facilitate the exchange and thus, the provisioning of data and data-related services. Data marketplaces are mainly studied for the exchange of data between organizations, i.e., as external data marketplaces. Yet, the data collected within a company also has the potential to provide valuable insights for this same company, for instance to optimize business processes. Studies indicate, however, that a significant amount of data within companies remains unused. In this sense, it is proposed to employ an Enterprise Data Marketplace, a platform to democratize data within a company among its employees. Specifics of the Enterprise Data Marketplace, how it can be implemented or how it makes data available throughout a variety of systems like data lakes has not been investigated in literature so far. Therefore, we present the characteristics and requirements of this kind of marketplace. We also distinguish it from other tools like data catalogs, provide a platform architecture and highlight how it integrates with the company’s system landscape. The presented concepts are demonstrated through an Enterprise Data Marketplace prototype and an experiment reveals that this marketplace significantly improves the data consumer workflows in terms of efficiency and complexity. This paper is based on several interdisciplinary works combining comprehensive research with practical experience from an industrial perspective. We therefore present the Enterprise Data Marketplace as a distinct marketplace type and provide the basis for establishing it within a company.