Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Schwenger, Alexander"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Non-porous organic crystals and their interaction with guest molecules from the gas phase
    (2020) Casco, Mirian Elizabeth; Krupp, Felix; Grätz, Sven; Schwenger, Alexander; Damakoudi, Vassiliki; Richert, Clemens; Frey, Wolfgang; Borchardt, Lars
    Some organic molecules encapsulate solvents upon crystallization. One class of compounds that shows a high propensity to form such crystalline solvates are tetraaryladamantanes (TAAs). Recently, tetrakis(dialkoxyphenyl)-adamantanes have been shown to encapsulate a wide range of guest molecules in their crystals, and to stabilize the guest molecules against undesired reactions. The term ‘encapsulating organic crystals’ (EnOCs) has been coined for these species. In this work, we studied the behavior of three TAAs upon exposition to different guest molecules by means of sorption technique. We firstly measured the vapor adsorption/desorption isotherms with water, tetrahydrofuran and toluene, and secondly, we studied the uptake of methane on dry and wet TAAs. Uptake of methane beyond one molar equivalent was detected for wet crystals, even though the materials showed a lack of porosity. Thus far, such behavior, which we ascribe to methane hydrate formation, had been described for porous non-crystalline materials or crystals with detectable porosity, not for non-porous organic crystals. Our results show that TAA crystals have interesting properties beyond the formation of conventional solvates. Gas-containing organic crystals may find application as reservoirs for gases that are difficult to encapsulate or are slow to form crystalline hydrates in the absence of a host compound. Wet tetraaryladamantane crystals take up methane in form of methane hydrate structure I, even though they appear non-porous to argon.
  • Thumbnail Image
    ItemOpen Access
    Transitions in solvate crystals of a tetraaryladamantane
    (2023) Frey, Wolfgang; Schwenger, Alexander; Berking, Tim; Richert, Clemens
    Obtaining high-resolution structures of liquid compounds can be difficult. Encapsulating them in the lattice of a larger organic molecule acting as crystallization chaperone is one option to overcome this difficulty. Tetraaryladamantane ethers can play the role of chaperones, accommodating a range of different guest molecules in their crystals. How well-ordered crystalline arrangements for molecules of different shape are achieved is not clear. Cases in which more than one structure is found may shed light on this phenomenon. Here, we report low-order cubic crystal structures of 1,3,5,7-tetrakis(2,4-dimethoxyphenyl)adamantane (TDA) encapsulating ortho-xylene or cyclohexane, together with better ordered structures obtained after warming the crystals to 60 °C. Evidence for cubic crystal systems was also found for limonene, hexachlorobutadiene and eucalyptol, with a transition to a triclinic system for the former two, but no transition up to 70 °C for the latter. These findings indicate that some solvate structures of TDA can readily undergo structural transitions to less solvated, better ordered systems. Crystals obtained by rapid thermal crystallization may be in kinetically trapped states, and the transition to a solvate-free crystal system appears to have a kinetic barrier that depends strongly on the structure of the liquid guest molecules encapsulated in the lattice.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart