Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Seifried, Robert"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    End-effector trajectory tracking of flexible link parallel robots using servo constraints
    (2022) Morlock, Merlin; Burkhardt, Markus; Seifried, Robert; Eberhard, Peter
    We apply the concept of servo constraints to end-effector trajectory tracking control of parallel robots with structural link flexibilities. Such servo constraints deliver the inverse robot model where solution approaches via projections are proposed, which transform the resulting differential-algebraic equations to ordinary differential equations. The applicable solution process depends on the existence and stability of the internal dynamics. When using the exact end-effector of flexible link robots as output, this internal dynamics is usually unstable. Then a two-point boundary value problem is considered in the framework of stable inversion to obtain the noncausal solution offline. This solution is used as a feedforward control, which is initially combined only with actuator feedback control. To also account for errors within the link flexibility, the well-known linear-quadratic regulator is adapted to end-effector trajectory tracking based on differential-algebraic equations. Finally, we propose a systematic input-output feedback linearization approach, which uses servo constraints for flexible link parallel robots. Here a minimum phase system is obtained by tracking a redefined end-effector output, which is an approximation of the exact end-effector position. All control concepts are validated experimentally with a parallel robot having a highly flexible link. The results allow us to compare different control approaches and show the superior performance of controllers that rely on a flexible multibody model in contrast to classical rigid multibody modeling.
  • Thumbnail Image
    ItemOpen Access
    Reduced nonlinear model of a spar-mounted floating wind turbine
    (2012) Sandner, Frank; Schlipf, David; Matha, Denis; Seifried, Robert; Cheng, Po Wen
    Floating offshore wind turbines (FOWTs) are complex dynamic systems requiring a thorough design for optimal operating performance and stability. Advanced control strategies, like model predictive control, are part of the integrated development of new concepts. This paper presents a simplified and computationally efficient model of the spar-mounted OC3-Hywind FOWT. Applications are, e.g., the real-time integration within the controller or an assessment during conceptual design, possibly within an optimization algorithm. Symbolic equations of motion of a multibody system are available as a set of ordinary differential equations. Aerodynamic forces are computed based on a rotor effective wind speed at hub height using data tables for thrust and torque coefficients. Hydrodynamic impacts on the floating body are modeled in a way that only the wave height serves as the disturbance signal. This estimation is based on potential flow theory and Morison’s formula for slender cylinders. The reduced model code is fully compiled and has a real-time factor of approximately 100. Various simulations of common load cases with a comparison to the certified FAST code have shown to be promising.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart