Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Sharbaf Kalaghichi, Saman"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Laser activation for highly boron-doped passivated contacts
    (2023) Sharbaf Kalaghichi, Saman; Hoß, Jan; Zapf-Gottwick, Renate; Werner, Jürgen H.
    Passivated, selective contacts in silicon solar cells consist of a double layer of highly doped polycrystalline silicon (poly Si) and thin interfacial silicon dioxide (SiO2). This design concept allows for the highest efficiencies. Here, we report on a selective laser activation process, resulting in highly doped p++-type poly Si on top of the SiO2. In this double-layer structure, the p++-poly Si layer serves as a layer for transporting the generated holes from the bulk to a metal contact and, therefore, needs to be highly conductive for holes. High boron-doping of the poly Si layers is one approach to establish the desired high conductivity. In a laser activation step, a laser pulse melts the poly Si layer, and subsequent rapid cooling of the Si melt enables electrically active boron concentrations exceeding the solid solubility limit. In addition to the high conductivity, the high active boron concentration in the poly Si layer allows maskless patterning of p++-poly Si/SiO2 layers by providing an etch stop layer in the Si etchant solution, which results in a locally structured p++-poly Si/SiO2 after the etching process. The challenge in the laser activation technique is not to destroy the thin SiO2, which necessitates fine tuning of the laser process. In order to find the optimal processing window, we test laser pulse energy densities (Hp) in a broad range of 0.7 J/cm2 ≤ Hp ≤ 5 J/cm2 on poly Si layers with two different thicknesses dpoly Si,1 = 155 nm and dpoly Si,2 = 264 nm. Finally, the processing window 2.8 J/cm2≤ Hp ≤ 4 J/cm2 leads to the highest sheet conductance (Gsh) without destroying the SiO2 for both poly Si layer thicknesses. For both tested poly Si layers, the majority of the symmetric lifetime samples processed using these Hp achieve a good passivation quality with a high implied open circuit voltage (iVOC) and a low saturation current density (J0). The best sample achieves iVOC = 722 mV and J0 = 6.7 fA/cm2 per side. This low surface recombination current density, together with the accompanying measurements of the doping profiles, suggests that the SiO2 is not damaged during the laser process. We also observe that the passivation quality is independent of the tested poly Si layer thicknesses. The findings of this study show that laser-activated p++-poly Si/SiO2 are not only suitable for integration into advanced passivated contact solar cells, but also offer the possibility of maskless patterning of these stacks, substantially simplifying such solar cell production.
  • Thumbnail Image
    ItemOpen Access
    Three-step process for efficient solar cells with boron-doped passivated contacts
    (2024) Sharbaf Kalaghichi, Saman; Hoß, Jan; Linke, Jonathan; Lange, Stefan; Werner, Jürgen H.
    Crystalline silicon (c-Si) solar cells with passivation stacks consisting of a polycrystalline silicon (poly-Si) layer and a thin interfacial silicon dioxide (SiO2) layer show high conversion efficiencies. Since the poly-Si layer in this structure acts as a carrier transport layer, high doping of the poly-Si layer is crucial for high conductivity and the efficient transport of charge carriers from the bulk to a metal contact. In this respect, conventional furnace-based high-temperature doping methods are limited by the solid solubility of the dopants in silicon. This limitation particularly affects p-type doping using boron. Previously, we showed that laser activation overcomes this limitation by melting the poly-Si layer, resulting in an active concentration beyond the solubility limit after crystallization. High electrically active boron concentrations ensure low contact resistivity at the (contact) metal/semiconductor interface and allow for the maskless patterning of the poly-Si layer by providing an etch-stop layer in an alkaline solution. However, the high doping concentration degrades during long high-temperature annealing steps. Here, we performed a test of the stability of such a high doping concentration under thermal stress. The active boron concentration shows only a minor reduction during SiNx:H deposition at a moderate temperature and a fast-firing step at a high temperature and with a short exposure time. However, for an annealing time 𝑡anneal = 30 min and an annealing temperature 600 °C ≤ 𝑇anneal ≤ 1000 °C, the high conductivity is significantly reduced, whereas a high passivation quality requires annealing in this range. We resolve this dilemma by introducing a second, healing laser reactivation step, which re-establishes the original high conductivity of the boron-doped poly-Si and does not degrade the passivation. After a thermal annealing temperature 𝑇anneal = 985 °C, the reactivated layers show high sheet conductance (Gsh) with Gsh = 24 mS sq and high passivation quality, with the implied open-circuit voltage (iVOC) reaching iVOC = 715 mV. Therefore, our novel three-step process consisting of laser activation, thermal annealing, and laser reactivation/healing is suitable for fabricating highly efficient solar cells with p++-poly-Si/SiO2 contact passivation layers.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart