Browsing by Author "Shoarinezhad, Vahid"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Applying automatic calibration for three-dimensional numerical modeling of hydro-morphological changes in channels and reservoirs(Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart, 2024) Shoarinezhad, Vahid; Wieprecht, Silke (Prof. Dr.-Ing.)Item Open Access Comparison of local and global optimization methods for calibration of a 3D morphodynamic model of a curved channel(2020) Shoarinezhad, Vahid; Wieprecht, Silke; Haun, StefanIn curved channels, the flow characteristics, sediment transport mechanisms, and bed evolution are more complex than in straight channels, owing to the interaction between the centrifugal force and the pressure gradient, which results in the formation of secondary currents. Therefore, using an appropriate numerical model that considers this fully three-dimensional effect, and subsequently, the model calibration are substantial tasks for achieving reliable simulation results. The calibration of numerical models as a subjective approach can become challenging and highly time-consuming, especially for inexperienced modelers, due to dealing with a large number of input parameters with respect to hydraulics and sediment transport. Using optimization methods can notably facilitate and expedite the calibration procedure by reducing the user intervention, which results in a more objective selection of parameters. This study focuses on the application of four different optimization algorithms for calibration of a 3D morphodynamic numerical model of a curved channel. The performance of a local gradient-based method is compared with three global optimization algorithms in terms of accuracy and computational time (model runs). The outputs of the optimization methods demonstrate similar sets of calibrated parameters and almost the same degree of accuracy according to the achieved minimum of the objective function. Accordingly, the most efficient method concerning the number of model runs (i.e., local optimization method) is selected for further investigation by setting up additional numerical models using different sediment transport formulae and various discharge rates. The comparisons of bed topography changes in several longitudinal and cross-sections between the measured data and the results of the calibrated numerical models are presented. The outcomes show an acceptable degree of accuracy for the automatically calibrated models.Item Open Access Using automatic model calibration for 3D morphological simulations : a case study of the Bodendorf reservoir flushing(2024) Shoarinezhad, Vahid; Olsen, Nils Reidar Bøe; Wieprecht, Silke; Haun, StefanReservoir sedimentation poses a significant challenge to water resource management. Improving the lifespan and productivity of reservoirs requires appropriate sediment management strategies, among which flushing operations have become more prevalent in practice. Numerical modeling offers a cost-effective approach to assessing the performance of different flushing operations. However, calibrating highly parametrized morphological models remains a complex task due to inherent uncertainties associated with sediment transport processes and model parameters. Traditional calibration methods require laborious manual adjustments and expert knowledge, hindering calibration accuracy and efficiency and becoming impractical when dealing with several uncertain parameters. A solution is to use optimization techniques that enable an objective evaluation of the model behavior by expediting the calibration procedure and reducing the issue of subjectivity. In this paper, we investigate bed level changes as a result of a flushing event in the Bodendorf reservoir in Austria by using a three-dimensional numerical model coupled with an optimization algorithm for automatic calibration. Three different sediment transport formulae (Meyer-Peter and Müller, van Rijn, and Wu) are employed and modified during the calibration, along with the roughness parameter, active layer thickness, volume fraction of sediments in bed, and the hiding-exposure parameter. The simulated bed levels compared to the measurements are assessed by several statistical metrics in different cross-sections. According to the goodness-of-fit indicators, the models using the formulae of van Rijn and Wu outperform the model calculated by the Meyer-Peter and Müller formula regarding bed patterns and the volume of flushed sediments.