Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Speidel, Joachim (Prof. Dr.-Ing. )"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Digital pre- and post-equalizers for in-car data transmission over plastic optical fibers
    (2014) Voigt, Yixuan; Speidel, Joachim (Prof. Dr.-Ing. )
    Lately, a hot topic in the automobile industry is the development of the in-vehicle infotainment communication network based on the media oriented system transport (MOST) standard, where a cost-effective optical physical layer composed of light emitting diodes (LED), plastic optical fibers (POF) and positive-intrinsic-negative photodiodes (PIN PD) is used by the in-car network. The latest MOST150 standard has specified a transmission speed of 150 Mbit/s, while the next MOST generation is targeted at multi-Gbit/s. Obviously, the very limited bandwidth of the current physical layer will weigh on the future MOST generations. However, it is important to evaluate the potential of the current physical layer, for the reason that the car-manufacturers may continue using the low-cost and easily operable POFs and LEDs. The objective of this dissertation is to increase the data-rate for the next MOST generation from 150 Mbit/s to 2 ∼ 3 Gbit/s, based upon the current MOST150 optical physical layer. The main emphasis lies in investigating electronic signal processing techniques to detect the multi-level pulse-amplitude modulated (MPAM) signal transmitted through the noisy dispersive POF-based optical channel. To be specific, four different transmission schemes are studied respectively: the post-equalization scheme using either linear or decision-feedback equalizer, the joint pre- and post-equalization scheme, the non-linear Tomlinson-Harashima precoding (THP) scheme, and the bidirectional decision feedback equalization (BiDFE) scheme. In the BiDFE scheme, a novel trellis-based BiDFE (TB-BiDFE) equalizer is proposed. Their performances are investigated by means of theoretical analysis and computer simulations. As will be shown, with the help of electronic equalizers and error-correcting code, the final bitrate is able to reach 3 Gbit/s over a 10 m standard step-index POF, despite the use of a low-cost LED transmitter.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart