Browsing by Author "Steeb, Holger"
Now showing 1 - 20 of 25
- Results Per Page
- Sort Options
Item Open Access Autonomous adaption of intelligent humidity‐programmed hydrogel patches for tunable stiffness and drug release(2023) Pflumm, Stephan; Wiedemann, Yvonne; Fauser, Dominik; Safaraliyev, Javidan; Lunter, Dominique; Steeb, Holger; Ludwigs, SabineIntelligent humidity‐programmed hydrogel patches with high stretchability and tunable water‐uptake and ‐release are prepared by copolymerization and crosslinking of N‐isopropylacrylamide and oligo(ethylene glycol) comonomers. These intelligent elastomeric patches strongly respond to different humidities and temperatures in terms of mechanical properties which makes them applicable for soft robotics and smart skin applications where autonomous adaption to environmental conditions is a key requirement. It is shown that beyond using the hydrogel in the conventional state in aqueous media, new patches can be controlled by relative humidity. This humidity programming of the patches allows to tune drug release kinetics, opening potential application fields such as skin wound therapy and personalized medication. In situ dynamic‐mechanical measurements show a huge dependence on temperature and humidity. The glass transition temperature Tg shifts from around 60 °C at dry conditions to below 0 °C for 75% r.h. and higher. The storage modulus is tunable over more than four orders of magnitude from 0.6 up to 400 MPa. Time‐temperature superposition in master curves allows to extract relaxation times over 14 orders of magnitude. With strains at break of over 200% the patches are compliant with human skin and therefore patient‐friendly in terms of adapting to movements.Item Open Access Benchmark simulations of dense suspensions flow using computational fluid dynamics(2022) Haustein, Martin A.; Eslami Pirharati, Mahmoud; Fataei, Shirin; Ivanov, Dimitri; Jara Heredia, Daniel; Kijanski, Nadine; Lowke, Dirk; Mechtcherine, Viktor; Rostan, Daniel; Schäfer, Thorsten; Schilde, Carsten; Steeb, Holger; Schwarze, RüdigerThe modeling of fresh concrete flow is still very challenging. Nevertheless, it is of highest relevance to simulate these industrially important materials with sufficient accuracy. Often, fresh concrete is assumed to show a Bingham-behavior. In numerical simulations, regularization must be used to prevent singularities. Two different regularization models, namely the 1) Bi-viscous, and 2) Bingham-Papanastasiou are investigated. Those models can be applied to complex flows with common simulation methods, such as the Finite Volume Method (FVM), Finite Element Method (FEM) and Smoothed Particle Hydrodynamics (SPH). Within the scope of this investigation, two common software packages from the field of FVM, namely Ansys Fluent and OpenFOAM, COMSOL Multiphysics (COMSOL) from FEM side, and HOOMD-blue.sph from the field of SPH are used to model a reference experiment and to evaluate the modeling quality. According to the results, a good agreement of data with respect to the velocity profiles for all software packages is achieved, but on the other side there are remarkable difficulties in the viscosity calculation especially in the shear- to plug-flow transition zone. Also, a minor influence of the regularization model on the velocity profile is observed.Item Open Access Comparing methods for permeability computation of porous materials and their limitations(2023) Krach, David; Steeb, HolgerEfficient numerical simulations of fluid flow on the pore scale allow for the numerical estimation of effective material properties of porous media, e.g. intrinsic permeability or tortuosity. These parameters are essential for various applications where hydro‐mechanical properties on larger scales have to be known. Numerical tools based intrinsically on pore scale simulations are known e.g. as Digital Rock Physics in geosciences and have even more and more replaced physical experiments. For these reasons, the validation of numerical methods as well as the establishment of clear limits regarding the application areas play an important role. Here, we compute single‐phase flow through a porous matrix, e.g. irregular sphere packings, sandstones, artificially created thin porous media, on the pore scale. Therefore we implement on the one hand a Smoothed Particle Hydrodynamics algorithm for solving the Navier‐Stokes equations and on the other hand a Finite Difference solver for the Stokes equations. Both methods work directly and seamlessly on voxel data of porous materials which are generated by µXRCT‐scans or by microfluidic experiments that have undergone segmentation and binarization. We compare both solvers from a parallel performance point of view as well as their results for flows in the Darcy regime. In addition, we investigate the limitations of the solvers using the example of a porous material whose pore geometry changes over time and precipitation affects the flow conditions.Item Open Access Diagnosing hydro-mechanical effects in subsurface fluid flow through fractures(2023) Schmidt, Patrick; Steeb, Holger; Renner, JörgHydro-mechanically induced transient changes in fracture volume elude an analysis of pressure and flow rate transients by conventional diffusion-based models. We used a previously developed fully coupled, inherently non-linear numerical simulation model to demonstrate that harmonic hydraulic excitation of fractures leads to systematic overtones in the response spectrum that can thus be used as a diagnostic criterion for hydro-mechanical interaction. The examination of response spectra, obtained from harmonic testing at four different field sites, for the occurrence of overtones confirmed their potential for the hydro-mechanical characterization of tested reservoirs. A non-dimensional analysis identified relative aperture change as the critical system parameter.Item Open Access Digital Rock Physics : a geological driven workflow for the segmentation of anisotropic Ruhr sandstone(2021) Balcewicz, Martin; Siegert, Mirko; Gurris, Marcel; Ruf, Matthias; Krach, David; Steeb, Holger; Saenger, Erik H.Over the last 3 decades, Digital Rock Physics (DRP) has become a complementary part of the characterization of reservoir rocks due to the non-destructive testing character of this technique. The use of high-resolution X-ray Computed Tomography (XRCT) has become widely accepted to create a digital twin of the material under investigation. Compared to other imaging techniques, XRCT technology allows a location-dependent resolution of the individual material particles in volume. However, there are still challenges in assigning physical properties to a particular voxel within the digital twin, due to standard histogram analysis or sub-resolution features in the rock. For this reason, high-resolution image-based data from XRCT, transmitted-light microscope, Scanning Electron Microscope (SEM) as well as geological input properties like geological diagenesis, mineralogical composition, sample’s microfabrics, and estimated sample’s porosity are combined to obtain an optimal spatial segmented image of the studied Ruhr sandstone. Based on a homogeneity test, which corresponds to the evaluation of the gray-scale image histogram, the preferred scan sample sizes in terms of permeability, thermal, and effective elastic rock properties are determined. In addition, these numerically derived property predictions are compared with laboratory measurements to obtain possible upper limits for sample size, segmentation accuracy, and a geometrically calibrated digital twin of the Ruhr sandstone. The comparison corresponding gray-scale image histograms as a function of sample sizes with the corresponding advanced numerical simulations provides a unique workflow for reservoir characterization of the Ruhr sandstone.Item Open Access DLP 4D printing of multi‐responsive bilayered structures(2023) Mainik, Philipp; Hsu, Li‐Yun; Zimmer, Claudius W.; Fauser, Dominik; Steeb, Holger; Blasco, EvaAdvances in soft robotics strongly rely on the development and manufacturing of new responsive soft materials. In particular, light‐based 3D printing techniques, and especially, digital light processing (DLP), offer a versatile platform for the fast manufacturing of complex 3D/4D structures with a high spatial resolution. In this work, DLP all‐printed bilayered structures exhibiting reversible and multi‐responsive behavior are presented for the first time. For this purpose, liquid crystal elastomers (LCEs) are used as active layers and combined with a printable non‐responsive elastomer acting as a passive layer. Furthermore, selective light response is incorporated by embedding various organic dyes absorbing light at different regimes in the active layers. An in‐depth characterization of the single materials and printed bilayers demonstrates a reversible and selective response. Last, the versatility of the approach is shown by DLP printing a bilayered complex 3D structure consisting of four different materials (a passive and three different LCE active materials), which exhibit different actuation patterns when irradiated with different wavelengths of light.Item Open Access Effects of enzymatically induced carbonate precipitation on capillary pressure : saturation relations(2022) Hommel, Johannes; Gehring, Luca; Weinhardt, Felix; Ruf, Matthias; Steeb, HolgerLeakage mitigation methods are an important part of reservoir engineering and subsurface fluid storage, in particular. In the context of multi-phase systems of subsurface storage, e.g., subsurface CO2 storage, a reduction in the intrinsic permeability is not the only parameter to influence the potential flow or leakage; multi-phase flow parameters, such as relative permeability and capillary pressure, are key parameters that are likely to be influenced by pore-space reduction due to leakage mitigation methods, such as induced precipitation. In this study, we investigate the effects of enzymatically induced carbonate precipitation on capillary pressure-saturation relations as the first step in accounting for the effects of induced precipitation on multi-phase flow parameters. This is, to our knowledge, the first exploration of the effect of enzymatically induced carbonate precipitation on capillary pressure-saturation relations thus far. First, pore-scale resolved microfluidic experiments in 2D glass cells and 3D sintered glass-bead columns were conducted, and the change in the pore geometry was observed by light microscopy and micro X-ray computed tomography, respectively. Second, the effects of the geometric change on the capillary pressure-saturation curves were evaluated by numerical drainage experiments using pore-network modeling on the pore networks extracted from the observed geometries. Finally, parameters of both the Brooks-Corey and Van Genuchten relations were fitted to the capillary pressure-saturation curves determined by pore-network modeling and compared with the reduction in porosity as an average measure of the pore geometry’s change due to induced precipitation. The capillary pressures increased with increasing precipitation and reduced porosity. For the 2D setups, the change in the parameters of the capillary pressure-saturation relation was parameterized. However, for more realistic initial geometries of the 3D samples, while the general patterns of increasing capillary pressure may be observed, such a parameterization was not possible using only porosity or porosity reduction, likely due to the much higher variability in the pore-scale distribution of the precipitates between the experiments. Likely, additional parameters other than porosity will need to be considered to accurately describe the effects of induced carbonate precipitation on the capillary pressure-saturation relation of porous media.Item Open Access Estimation of capillary‐associated NAPL‐water interfacial areas for unconsolidated porous media by kinetic interface sensitive (KIS) tracer method(2023) Tatomir, Alexandru; Gao, Huhao; Abdullah, Hiwa; Pötzl, Christopher; Karadimitriou, Nikolaos; Steeb, Holger; Licha, Tobias; Class, Holger; Helmig, Rainer; Sauter, MartinBy employing kinetic interface sensitive (KIS) tracers, we investigate three different types of glass‐bead materials and three natural porous media systems to quantitatively characterize the influence of the porous‐medium grain‐, pore‐size and texture on the specific capillary‐associated interfacial area (FIFA) between an organic liquid and water. By interpreting the breakthrough curves (BTCs) of the reaction product of the KIS tracer hydrolysis, we obtain a relation for the specific IFA and wetting phase saturation. The immiscible displacement process coupled with the reactive tracer transport across the fluid-fluid interface is simulated with a Darcy‐scale numerical model. Linear relations between the specific capillary‐associated FIFA and the inverse mean grain diameter can be established for measurements with glass beads and natural soils. We find that the grain size has minimal effect on the capillary‐associated FIFA for unconsolidated porous media formed by glass beads. Conversely, for unconsolidated porous media formed by natural soils, the capillary‐associated FIFA linearly increases with the inverse mean grain diameter, and it is much larger than that from glass beads. This indicates that the surface roughness and the irregular shape of the grains can cause the capillary‐associated FIFA to increase. The results are also compared with the data collected from literature, measured with high resolution microtomography and partitioning tracer methods. Our study considerably expands the applicability range of the KIS tracers and enhances the confidence in the robustness of the method.Item Open Access Experimental evaluation of fluid connectivity in two‐phase flow in porous media during drainage(2022) Vahid Dastjerdi, Samaneh; Karadimitriou, Nikolaos; Hassanizadeh, S. Majid; Steeb, HolgerThis study aims to experimentally investigate the possibility of combining two extended continuum theories for two‐phase flow. One of these theories considers interfacial area as a separate state variable, and the other explicitly discriminates between connected and disconnected phases. This combination enhances our potential to effectively model the apparent hysteresis, which generally dominates two‐phase flow. Using optical microscopy, we perform microfluidic experiments in quasi‐2D artificial porous media for various cyclic displacement processes and boundary conditions. Specifically for a number of sequential drainage processes, with detailed image (post‐)processing, pore‐scale parameters such as the interfacial area between the phases (wetting, non‐wetting, and solid), and local capillary pressure, as well as macroscopic parameters like saturation, are estimated. We show that discriminating between connected and disconnected clusters and the concept of the interfacial area as a separate state variable can be an appropriate way of modeling hysteresis in a two‐phase flow scheme. The drainage datasets of capillary pressure, saturation, and specific interfacial area, are plotted as a surface, given by f (Pc, sw, awn) = 0. These surfaces accommodate all data points within a reasonable experimental error, irrespective of the boundary conditions, as long as the corresponding liquid is connected to its inlet. However, this concept also shows signs of reduced efficiency as a modeling approach in datasets gathered through combining experiments with higher volumetric fluxes. We attribute this observation to the effect of the porous medium geometry on the phase distribution. This yields further elaboration, in which this speculation is thoroughly studied and analyzed.Item Open Access Experimental methods and imaging for enzymatically induced calcite precipitation in a microfluidic cell(2021) Weinhardt, Felix; Class, Holger; Vahid Dastjerdi, Samaneh; Karadimitriou, Nikolaos; Lee, Dongwon; Steeb, HolgerEnzymatically induced calcite precipitation (EICP) in porous media can be used as an engineering option to achieve precipitation in the pore space, for example, aiming at a targeted sealing of existing flow paths. This is accomplished through a porosity and consequent permeability alteration. A major source of uncertainty in modeling EICP is in the quantitative description of permeability alteration due to precipitation. This report presents methods for investigating experimentally the time‐resolved effects of growing precipitates on porosity and permeability on the pore scale, in a poly‐di‐methyl‐siloxane microfluidic flow cell. These methods include the design and production of the microfluidic cells, the preparation and usage of the chemical solutions, the injection strategy, and the monitoring of pressure drops for given fluxes for the determination of permeability. EICP imaging methods are explained, including optical microscopy and X‐ray microcomputed tomography (XRCT), and the corresponding image processing and analysis. We present and discuss a new experimental procedure using a microfluidic cell, as well as the general perspectives for further experimental and numerical simulation studies on induced calcite precipitation. The results of this study show the enormous benefits and insights achieved by combining both light microscopy and XRCT with hydraulic measurements in microfluidic chips. This allows for a quantitative analysis of the evolution of precipitates with respect to their size and shape, while monitoring their influence on permeability. We consider this to be an improvement of the existing methods in the literature regarding the interpretation of recorded data (pressure, flux, and visualization) during pore morphology alteration.Item Open Access Fractures in glaciers : crack tips and their stress fields by observation and modeling(2023) Humbert, Angelika; Gross, Dietmar; Sondershaus, Rabea; Müller, Ralf; Steeb, Holger; Braun, Matthias; Brauchle, Jörg; Stebner, Karsten; Rückamp, MartinHigh‐resolution optical camera systems are opening new opportunities to study fractures in ice. Here, we present data obtained from the Modular Aerial Camera System camera system operated onboard of Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI) polar aircraft in northeast Greenland in 2022. In addition, we are using optical and radar satellite imagery. The study area is the 79°N Glacier (Nioghalvfjerdsbræ, 79NG), an outlet glacier of the Northeast Greenland Ice Stream. We found that crack tips are exhibiting additional isolated cracks ahead of the main crack. Subsequent crack propagation is starting from those isolated cracks, leading to an advance of the crack, with bridges between crack faces. The bridges provide information of the episodic crack propagation. Fractures have typically a length scale of kilometers and the distance of crack faces is in the order of meters to tenths of meters. Fracture modes will be inferred from stress fields computed by an inverse modeling approach using the Ice Sheet and Sea Level System Model. To this end, a surface velocity field derived from satellite remote sensing is used for the optimal control method that constrains model parameters, for example, basal friction coefficient or rheology.Item Open Access GeomInt : geomechanical integrity of host and barrier rocks : experiments, models and analysis of discontinuities(2021) Kolditz, Olaf; Fischer, Thomas; Frühwirt, Thomas; Görke, Uwe-Jens; Helbig, Carolin; Konietzky, Heinz; Maßmann, Jobst; Nest, Mathias; Pötschke, Daniel; Rink, Karsten; Sattari, Amir; Schmidt, Patrick; Steeb, Holger; Wuttke, Frank; Yoshioka, Keita; Vowinckel, Bernhard; Ziefle, Gesa; Nagel, ThomasThe present paper gives an overview of the GeomInt project “Geomechanical integrity of host and barrier rocks - experiment, modelling and analysis of discontinuities” which has been conducted from 2017–2020 within the framework of the “Geo:N Geosciences for Sustainability” program. The research concept of the collaborative project is briefly introduced followed by a summary of the most important outcomes. The research concept puts geological discontinuities into the centre of investigations- as these belong to the most interesting and critical elements for any subsurface utilisation. Thus, while research questions are specific, they bear relevance to a wide range of applications. The specific research is thus integrated into a generic concept in order to make the results more generally applicable and transferable. The generic part includes a variety of conceptual approaches and their numerical realisations for describing the evolution of discontinuities in the most important types of barrier rocks. An explicit validation concept for the generic framework was developed and realised by specific “model-experiment-exercises” (MEX) which combined experiments and models in a systematic way from the very beginning. 16 MEX have been developed which cover a wide range of fundamental fracturing mechanisms, i.e. swelling/shrinkage, fluid percolation, and stress redistribution processes. The progress in model development is also demonstrated by field-scale applications, e.g. in the analysis and design of experiments in underground research laboratories in Opalinus Clay (URL Mont Terri, Switzerland) and salt rock (research mine Springen, Germany).Item Open Access The high cycle fatigue testing of High‐Performance Concretes using high frequency excitation(2023) Madadi, Hamid; Steeb, HolgerThe effect of fatigue failure in brittle materials like (ultra) High Performance Concrete (UHPC) due to cyclic loading causes unexpected failure that consequently results in heavy costs in marine and civil structures. To characterize the effect of fatigue, cyclic loading tests are performed, and “the number of cycles to failure” are experimentally determined. One problem with these kinds of tests is that such experimental investigations are potentially expensive, i.e., time‐consuming process since the number of loading cycles could be extremely high. Further, within the different damage phases of the cycling tests, one has no access to the small‐scale, i.e., microscopical evolution of (micro‐)cracks. Additionally, a full characterization of the small‐strain stiffness evolution of the material is challenging. The goal of the research investigation is to combine a (large amplitude) High Cycle Fatigue experiment with a (low amplitude) Dynamic Mechanical Analysis (DMA). Using a setup based on the piezoelectric actuator, the (rate‐dependent) mechanical properties of the material in tangential space, and the failure modes of the material will be examined accurately. The excitation frequency is between 0.01 Hz to 1000 Hz which allows for reducing the experimental investigation time to failure. Further, it allows investigating the effect of frequency on the number of cycles to failure. Firstly, experimental results for HPC and berea sandstone samples will be presented. Harmonic experimental data include (direct) strain measurements in axial and circumferential directions as well as forces in axial directions. In addition, the resulting complex Young's modulus and evolving damage‐like “history” of HPC and berea sandstone specimens will be shown.Item Open Access High‐speed fatigue testing of high‐performance concretes and parallel frequency sweep characterization(2023) Madadi, Hamid; Steeb, HolgerCycling loading of brittle materials like ultra‐high‐performance concrete (UHPC), which is often used in marine and civil structures, results in unexpected failures. When a material is subjected to cyclic loading, its mechanical properties change due to the evolution of (micro‐)fractures often denoted as damage. To better understand the effective material's properties under such kind of fatigue load and to relate the material's properties to the specific time‐dependent loading characteristics, the mechanical response of the material shall be characterized at characteristic harmonic excitations. Therefore, cyclic loading experiments are conducted to determine how the evolution of microfractures, that is, fatigue, affects the material's effective mechanical properties and after how many cycles microfractures further evolve towards meso‐ and macrofractures leading finally to a critical number of cycles to material's failure. The problem with such cyclic fatigue tests is that they are potentially “expensive” to conduct as the number of loading cycles at failure can be extremely high. Moreover, it is not possible to observe and characterize further the evolution of (micro‐)fractures within the different damage phases of the cycling experiment. Further, it is challenging to characterize the material's small‐strain stiffness evolution. In this investigation, a combination of a (high‐amplitude) high‐frequency excitation and a high‐speed fatigue testing approach is used for the high cycle fatigue experiment along with a characterization approach of the material properties using a (low‐amplitude) dynamic mechanical analysis (DMA). The test setup applies harmonic excitations for high and low amplitudes using a high‐voltage piezoelectric actuators. Furthermore, the failure modes of the material will be examined. The excitation frequency 𝑓 for the fatigue test is significantly higher than in classical low- and high-cyclic fatigue approaches, that is, 10 < 𝑓 < 200 Hz, allowing to reduce the overall time of the experimental investigation time to failure. Further, the frequency-dependent number of cycles to failure is studied. Similar to standard DMA, effective complex mechanical properties of the material in tangential space are obtained in frequencies between 0.01 and 1000 Hz; while the observed mechanical properties of these materials change with increasing frequency. In the case of materials' behavior, by increasing the frequency, Young's modulus increases and Poisson's ratio decreases. Experimental fatigue results will be presented for UHPC samples. Harmonic experimental data include (direct) strain measurements in axial and circumferential directions as well as forces in axial directions. In addition, the resulting complex Young's modulus and evolving damage‐like “history” of UHPC will be shown.Item Open Access Influence of humidity on the rheology of thermoresponsive shape memory polymers(2022) Fauser, Dominik; Steeb, HolgerShape Memory Polymers (SMPs) have the inherent ability to maintain a reversible temporary shape and restore a permanent shape under an external trigger. The class of materials has great potential to contribute to smart applications in soft robotics, aerospace, actuation and biomedicine. In these potential application domains, materials are often exposed to large fluctuations due to humidity influences. Therefore, a novel approach is developed to characterize the stronlgy coupled thermal, humidity and time-dependent behavior of polyurethane-based SMP. Weight gain measurements with disk samples of dimension 35 ×35 ×1.5 mm3and linear expansion tests with rectangular samples of dimension 10 ×40 ×1.0 mm3at different relative humidity are carried out to perform the isothermal and isohumid dynamic measurements in thermodynamic equilibrium. The time-temperature superposition is used to characterize and compare the viscoelastic properties at different relative humidity. Concerning effective material properties, a major finding of this investigation is the horizontal shift of the material parameter in the temperature space due to the presence of humidity. Thus, the humidity-dependent material behavior is fully described by a humidity-dependent glass transition temperature. The measured experiments provide a full description of the thermal, humidity and mechanical behavior of SMPs. Graphical abstractItem Open Access Investigation of the influence of moisture content on fatigue behaviour of HPC by using DMA and XRCT(2021) Markert, Martin; Katzmann, Josef; Birtel, Veit; Garrecht, Harald; Steeb, HolgerHigh-performance concrete (HPC) is a topic of current research and construction projects, due to its outstanding compressive strength and durability. In particular, its behaviour under high-cycle fatigue loading is the focus of current investigations, to further pave the way to highly challenging long-lasting constructions; e.g., bridges or offshore buildings. In order to investigate the behaviour of HPC with different moisture contents in more detail, a mixture of silica sand and basalt aggregate with a maximum grain size of 8 mm was investigated with three different moisture contents. For this purpose, cyclic compressive fatigue tests at a loading frequency of 10 Hz and different maximum stress levels were performed. The main focus was the moisture influence on the number of cycles to failure and the development of concrete temperature and strain. In a further step, only the mortar matrix was investigated. For this purpose, the mixture was produced without basalt, and the moisture influence was investigated on smaller-sized test specimens using dynamic mechanical analysis (DMA) and X-ray computed tomography (XRCT). It was shown that the moisture content of HPC had a significant influence on the fatigue damage behaviour due to the number of cycles to failure decreasing significantly with increased moisture. In addition, there was also an influence on the temperature development, as well as on the strain development. It was shown that increasing moisture content was associated with an increase in strain development. XRCT scans, in the course of the damage phases, showed an increase in internal cracks, and made their size visible. With the help of DMA as a new research method in the field of concrete research, we were also able to measure damage development related to a decrease in sample stiffness. Both methods, XRCT and DMA, can be listed as nondestructive methods, and thus can complement the known destructive test methods, such as light microscopy.Item Open Access Investigations into the opening of fractures during hydraulic testing using a hybrid-dimensional flow formulation(2021) Schmidt, Patrick; Steeb, Holger; Renner, JörgWe applied a hybrid-dimensional flow model to pressure transients recorded during pumping experiments conducted at the Reiche Zeche underground research laboratory to study the opening behavior of fractures due to fluid injection. Two distinct types of pressure responses to flow-rate steps were identified that represent radial-symmetric and plane-axisymmetric flow regimes from a conventional pressure-diffusion perspective. We numerically modeled both using a radial-symmetric flow formulation for a fracture that comprises a non-linear constitutive relation for the contact mechanics governing reversible fracture surface interaction. The two types of pressure response can be modeled equally well. A sensitivity study revealed a positive correlation between fracture length and normal fracture stiffness that yield a match between field observations and numerical results. Decomposition of the acting normal stresses into stresses associated with the deformation state of the global fracture geometry and with the local contacts indicates that geometrically induced stresses contribute the more the lower the total effective normal stress and the shorter the fracture. Separating the contributions of the local contact mechanics and the overall fracture geometry to fracture normal stiffness indicates that the geometrical stiffness constitutes a lower bound for total stiffness; its relevance increases with decreasing fracture length. Our study demonstrates that non-linear hydro-mechanical coupling can lead to vastly different hydraulic responses and thus provides an alternative to conventional pressure-diffusion analysis that requires changes in flow regime to cover the full range of observations.Item Open Access Machine learning assists in increasing the time resolution of X-ray computed tomography applied to mineral precipitation in porous media(2023) Lee, Dongwon; Weinhardt, Felix; Hommel, Johannes; Piotrowski, Joseph; Class, Holger; Steeb, HolgerMany subsurface engineering technologies or natural processes cause porous medium properties, such as porosity or permeability, to evolve in time. Studying and understanding such processes on the pore scale is strongly aided by visualizing the details of geometric and morphological changes in the pores. For realistic 3D porous media, X-Ray Computed Tomography (XRCT) is the method of choice for visualization. However, the necessary high spatial resolution requires either access to limited high-energy synchrotron facilities or data acquisition times which are considerably longer (e.g. hours) than the time scales of the processes causing the pore geometry change (e.g. minutes). Thus, so far, conventional benchtop XRCT technologies are often too slow to allow for studying dynamic processes. Interrupting experiments for performing XRCT scans is also in many instances no viable approach. We propose a novel workflow for investigating dynamic precipitation processes in porous media systems in 3D using a conventional XRCT technology. Our workflow is based on limiting the data acquisition time by reducing the number of projections and enhancing the lower-quality reconstructed images using machine-learning algorithms trained on images reconstructed from high-quality initial- and final-stage scans. We apply the proposed workflow to induced carbonate precipitation within a porous-media sample of sintered glass-beads. So we were able to increase the temporal resolution sufficiently to study the temporal evolution of the precipitate accumulation using an available benchtop XRCT device.Item Open Access Modelling and simulation of natural hydraulic fracturing applied to experiments on natural sandstone cores(2024) Wang, Junxiang; Sonntag, Alixa; Lee, Dongwon; Xotta, Giovanna; Salomoni, Valentina A.; Steeb, Holger; Wagner, Arndt; Ehlers, WolfgangUnder in-situ conditions, natural hydraulic fractures (NHF) can occur in permeable rock structures as a result of a rapid decrease of pore water accompanied by a local pressure regression. Obviously, these phenomena are of great interest for the geo-engineering community, as for instance in the framework of mining technologies. Compared to induced hydraulic fractures, NHF do not evolve under an increasing pore pressure resulting from pressing a fracking fluid in the underground but occur and evolve under local pore-pressure reductions resulting in tensile stresses in the rock material. The present contribution concerns the question under what quantitative circumstances NHF emerge and evolve. By this means, the novelty of this article results from the combination of numerical investigations based on the Theory of Porous Media with a tailored experimental protocol applied to saturated porous sandstone cylinders. The numerical investigations include both pre-existing and evolving fractures described by use of an embedded phase-field fracture model. Based on this procedure, representative mechanical and hydraulic loading scenarios are simulated that are in line with experimental investigations on low-permeable sandstone cylinders accomplished in the Porous Media Lab of the University of Stuttgart. The values of two parameters, the hydraulic conductivity of the sandstone and the critical energy release rate of the fracture model, have turned out essential for the occurrence of tensile fractures in the sandstone cores, where the latter is quantitatively estimated by a comparison of experimental and numerical results. This parameter can be taken as reference for further studies of in-situ NHF phenomena and experimental results.Item Open Access Optimal exposure time in gamma-ray attenuation experiments for monitoring time-dependent densities(2022) Gonzalez-Nicolas, Ana; Bilgic, Deborah; Kröker, Ilja; Mayar, Assem; Trevisan, Luca; Steeb, Holger; Wieprecht, Silke; Nowak, WolfgangSeveral environmental phenomena require monitoring time-dependent densities in porous media, e.g., clogging of river sediments, mineral dissolution/precipitation, or variably-saturated multiphase flow. Gamma-ray attenuation (GRA) can monitor time-dependent densities without being destructive or invasive under laboratory conditions. GRA sends gamma rays through a material, where they are attenuated by photoelectric absorption and then recorded by a photon detector. The attenuated intensity of the emerging beam relates to the density of the traversed material via Beer-Lambert’s law. An important parameter for designing time-variable GRA is the exposure time, the time the detector takes to gather and count photons before converting the recorded intensity to a density. Large exposure times capture the time evolution poorly (temporal raster error, inaccurate temporal discretization), while small exposure times yield imprecise intensity values (noise-related error, i.e. small signal-to-noise ratio). Together, these two make up the total error of observing time-dependent densities by GRA. Our goal is to provide an optimization framework for time-dependent GRA experiments with respect to exposure time and other key parameters, thus facilitating neater experimental data for improved process understanding. Experimentalists set, or iterate over, several experimental input parameters (e.g., Beer-Lambert parameters) and expectations on the yet unknown dynamics (e.g., mean and amplitude of density and characteristic time of density changes). We model the yet unknown dynamics as a random Gaussian Process to derive expressions for expected errors prior to the experiment as a function of key experimental parameters. Based on this, we provide an optimization framework that allows finding the optimal (minimal-total-error) setup and demonstrate its application on synthetic experiments.