Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Tahir, Mehran"

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    A comprehensive analysis of windings electrical and mechanical faults using a high-frequency model
    (2019) Tahir, Mehran; Tenbohlen, Stefan
    The measurement procedures for frequency response analysis (FRA) of power transformers are well documented in IEC and IEEE standards. However, the interpretation of FRA results is still far from reaching an accepted methodology and is limited to the analysis of the experts. The dilemma is that there are limited case studies available to understand the effect of different faults. Additionally, due to the destructive nature, it is not possible to apply the real mechanical deformations in the transformer windings to obtain the data. To solve these issues, in this contribution, the physical geometry of a three-phase transformer is simulated using 3D finite integration analysis to emulate the real transformer operation. The novelty of this model is that FRA traces are directly obtained from the 3D model of windings without estimating and solving lumped parameter circuit models. At first, the method is validated with a simple experimental setup. Afterwards, different mechanical and electrical faults are simulated, and their effects on FRA are discussed objectively. A key contribution of this paper is the winding assessment factor it introduces based on the standard deviation of difference (SDD) to detect and classify different electrical and mechanical faults. The results reveal that the proposed model provides the ability of precise and accurate fault simulation. By using SDD, different deviation patterns can be characterized for different faults, which makes fault classification possible. Thus, it provides a way forward towards the establishment of the standard algorithm for a reliable and automatic assessment of transformer FRA results.
  • Thumbnail Image
    ItemOpen Access
    Transformer winding condition assessment using feedforward artificial neural network and frequency response measurements
    (2021) Tahir, Mehran; Tenbohlen, Stefan
    Frequency response analysis (FRA) is a well-known method to assess the mechanical integrity of the active parts of the power transformer. The measurement procedures of FRA are standardized as described in the IEEE and IEC standards. However, the interpretation of FRA results is far from reaching an accepted and definitive methodology as there is no reliable code available in the standard. As a contribution to this necessity, this paper presents an intelligent fault detection and classification algorithm using FRA results. The algorithm is based on a multilayer, feedforward, backpropagation artificial neural network (ANN). First, the adaptive frequency division algorithm is developed and various numerical indicators are used to quantify the differences between FRA traces and obtain feature sets for ANN. Finally, the classification model of ANN is developed to detect and classify different transformer conditions, i.e., healthy windings, healthy windings with saturated core, mechanical deformations, electrical faults, and reproducibility issues due to different test conditions. The database used in this study consists of FRA measurements from 80 power transformers of different designs, ratings, and different manufacturers. The results obtained give evidence of the effectiveness of the proposed classification model for power transformer fault diagnosis using FRA.
  • Thumbnail Image
    ItemOpen Access
    Transformer winding fault classification and condition assessment based on random forest using FRA
    (2023) Tahir, Mehran; Tenbohlen, Stefan
    At present, the condition assessment of transformer winding based on frequency response analysis (FRA) measurements demands skilled personnel. Despite many research efforts in the last decade, there is still no definitive methodology for the interpretation and condition assessment of transformer winding based on FRA results, and this is a major challenge for the industrial application of the FRA method. To overcome this challenge, this paper proposes a transformer condition assessment (TCA) algorithm, which is based on numerical indices, and a supervised machine learning technique to develop a method for the automatic interpretation of FRA results. For this purpose, random forest (RF) classifiers were developed for the first time to identify the condition of transformer winding and classify different faults in the transformer windings. Mainly, six common states of the transformer were classified in this research, i.e., healthy transformer, healthy transformer with saturated core, mechanically damaged winding, short-circuited winding, open-circuited winding, and repeatability issues. In this research, the data from 139 FRA measurements performed in more than 80 power transformers were used. The database belongs to the transformers having different ratings, sizes, designs, and manufacturers. The results reveal that the proposed TCA algorithm can effectively assess the transformer winding condition with up to 93% accuracy without much human intervention.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart