Browsing by Author "Takagi, Hidenori"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Heteroepitaxial tuning of resonant forbidden reflections in a spinel(2024) Oka, Ryosuke; Kim, Minu; Wochner, Peter; Francoual, Sonia; Palstra, Thomas T. M.; Takagi, Hidenori; Huang, DennisIn resonant elastic X-ray scattering (REXS), low site symmetries in a crystal may be revealed through resonant Bragg reflections that are normally forbidden in conventional X-ray diffraction due to screw axes and/or glide planes. These resonant forbidden reflections have been observed in spinel compounds, but to better understand and utilize their connection to microscopic material parameters and possible charge and/or orbital ordering, a systematic study of their dependence on growth conditions and applied strain is desired. We performed REXS at the V K edge and examined the resonant forbidden (002) reflection in thin films of the spinel LiV2O4 grown on three substrates: MgAl2O4, SrTiO3, and MgO. The energy dependence of the (002) reflection shows a systematic evolution as epitaxial strain modifies the local anisotropy of the V site. More strikingly, the integrated intensity of the (002) reflection varies by more than an order of magnitude in films on different substrates. We speculate that the large variation in integrated intensity reflects the varying degree of antiphase domains that arise during the epitaxy.Item Open Access Monoclinic SrIrO3 : a Dirac semimetal produced by non-symmorphic symmetry and spin-orbit coupling(2018) Takayama, Tomohiro; Yaresko, Alexander N.; Takagi, HidenoriSrIrO3 crystallizes in a monoclinic structure of distorted hexagonal perovskite at ambient pressure. The transport measurements show that the monoclinic SrIrO3 is a low-carrier density semimetal, as in the orthorhombic perovskite polymorph. The electronic structure calculation indicates a semimetallic band structure with Dirac bands at two high-symmetry points of Brillouin zone only when spin-orbit coupling is incorporated, suggesting that the semimetallic state is produced by the strong spin-orbit coupling. We argue that the Dirac bands are protected by the non-symmorphic symmetry of lattice.Item Open Access Observation of ultrafast interfacial Meitner-Auger energy transfer in a Van der Waals heterostructure(2023) Dong, Shuo; Beaulieu, Samuel; Selig, Malte; Rosenzweig, Philipp; Christiansen, Dominik; Pincelli, Tommaso; Dendzik, Maciej; Ziegler, Jonas D.; Maklar, Julian; Xian, R. Patrick; Neef, Alexander; Mohammed, Avaise; Schulz, Armin; Stadler, Mona; Jetter, Michael; Michler, Peter; Taniguchi, Takashi; Watanabe, Kenji; Takagi, Hidenori; Starke, Ulrich; Chernikov, Alexey; Wolf, Martin; Nakamura, Hiro; Knorr, Andreas; Rettig, Laurenz; Ernstorfer, RalphAtomically thin layered van der Waals heterostructures feature exotic and emergent optoelectronic properties. With growing interest in these novel quantum materials, the microscopic understanding of fundamental interfacial coupling mechanisms is of capital importance. Here, using multidimensional photoemission spectroscopy, we provide a layer- and momentum-resolved view on ultrafast interlayer electron and energy transfer in a monolayer-WSe2/graphene heterostructure. Depending on the nature of the optically prepared state, we find the different dominating transfer mechanisms: while electron injection from graphene to WSe2 is observed after photoexcitation of quasi-free hot carriers in the graphene layer, we establish an interfacial Meitner-Auger energy transfer process following the excitation of excitons in WSe2. By analysing the time-energy-momentum distributions of excited-state carriers with a rate-equation model, we distinguish these two types of interfacial dynamics and identify the ultrafast conversion of excitons in WSe2 to valence band transitions in graphene. Microscopic calculations find interfacial dipole-monopole coupling underlying the Meitner-Auger energy transfer to dominate over conventional Förster- and Dexter-type interactions, in agreement with the experimental observations. The energy transfer mechanism revealed here might enable new hot-carrier-based device concepts with van der Waals heterostructures.Item Open Access Photo-excited dynamics in the excitonic insulator Ta2NiSe5(2018) Werdehausen, Daniel; Takayama, Tomohiro; Albrecht, Gelon; Lu, Yangfan; Takagi, Hidenori; Kaiser, StefanThe excitonic insulator is an intriguing correlated electron phase formed of condensed excitons. A promising candidate is the small band gap semiconductor Ta2NiSe5. Here we investigate the quasiparticle and coherent phonon dynamics in Ta2NiSe5 in a time resolved pump probe experiment. Using the models originally developed by Kabanov et al for superconductors (Kabanov et al 1999 Phys. Rev. B 59 1497), we show that the material’s intrinsic gap can be described as almost temperature independent for temperatures up to about 250 K to 275 K. This behavior supports the existence of the excitonic insulator state in Ta2NiSe5. The onset of an additional temperature dependent component to the gap above these temperatures suggests that the material is located in the BEC-BCS crossover regime. Furthermore, we show that this state is very stable against strong photoexcitation, which reveals that the free charge carriers are unable to effectively screen the attractive Coulomb interaction between electrons and holes, likely due to the quasi 1D structure of Ta2NiSe5.