Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Takors, Ralf"

Filter results by typing the first few letters
Now showing 1 - 20 of 39
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Balancing glucose and oxygen uptake rates to enable high amorpha‐4,11‐diene production in Escherichia coli via the methylerythritol phosphate pathway
    (2021) Patil, Vikas; Santos, Christine N. S.; Ajikumar, Parayil K.; Sarria, Stephen; Takors, Ralf
    Amorpha‐4,11‐diene (AMD4,11) is a precursor to artemisinin, a potent antimalarial drug that is traditionally extracted from the shrubs of Artemisia annua. Despite significant prior efforts to produce artemisinin and its precursors through biotechnology, there remains a dire need for more efficient biosynthetic routes for its production. Here, we describe the optimization of key process conditions for an Escherichia coli strain producing AMD4,11 via the native methylerythritol phosphate (MEP) pathway. By studying the interplay between glucose uptake rates and oxygen demand, we were able to identify optimal conditions for increasing carbon flux through the MEP pathway by manipulating the availability of NADPH required for terpenoid production. Installation of an optimal qO2/qglucose led to a 6.7‐fold increase in product titers and a 6.5‐fold increase in carbon yield.
  • Thumbnail Image
    ItemOpen Access
    Cell cycle control by optogenetically regulated cell cycle inhibitor protein p21
    (2023) Lataster, Levin; Huber, Hanna Mereth; Böttcher, Christina; Föller, Stefanie; Takors, Ralf; Radziwill, Gerald
    The cell cycle is divided in four phases, the G1 phase for growth in cell size and increased protein biosynthesis, the S phase for the synthesis and replication of DNA, and the G2 phase for preparing the cell for the M phase, the phase of cell division. Cell cycle inhibitors control progression through the cell cycle. The cell cycle inhibitor p21 arrests cells in the G1 phase correlating with a prolonged protein production phase. This effect could be used to increase the production of biotherapeutic proteins. Here, we applied an optogenetic approach to control the function of p21. Optogenetics is an emerging field within synthetic biology and based on genetically encoded light-sensitive elements derived from plants, fungi or bacteria. Optogenetic tools can be used to control biological functions such as signaling pathways, metabolic pathways or gene expression via light with less side effects than when using chemical inducers. In this study, we designed and applied light switches to control the subcellular localization and thereby the function of p21via light. The stimulation of light-regulated p21 increased the number of cells arrested in the G1 phase correlating with the increased expression of a reporter protein. Implementation of this system could be used to optimize the production of biotherapeutic protein.
  • Thumbnail Image
    ItemOpen Access
    CO2 - intrinsic product, essential substrate and regulatory trigger of microbial and mammalian production processes
    (2015) Blombach, Bastian; Takors, Ralf
    Carbon dioxide formation mirrors the final carbon oxidation steps of aerobic metabolism in microbial and mammalian cells. As a consequence CO2/HCO3- dissociation equilibria arise in fermenters by the growing culture. Anaplerotic reactions make use of the abundant CO2/HCO3- levels for refueling citric acid cycle demands and for enabling oxaloacetate derived products. At the same time CO2 is released manifold in metabolic reactions via decarboxylation activity. The levels of extracellular CO2/HCO3- depend on cellular activities and physical constraints such like hydrostatic pressures, aeration and the efficiency of mixing in large-scale bioreactors. Besides, local CO2/HCO3- levels might also act as metabolic inhibitors or transcriptional effectors triggering regulatory events inside the cells. This review gives an overview about fundamental physicochemical properties of CO2/HCO3- in microbial and mammalian cultures effecting cellular physiology, production processes, metabolic activity and transcriptional regulation.
  • Thumbnail Image
    ItemOpen Access
    Comparison of l‐tyrosine containing dipeptides reveals maximum ATP availability for l‐prolyl‐l‐tyrosine in CHO cells
    (2020) Verhagen, Natascha; Wijaya, Andy Wiranata; Teleki, Attila; Fadhlullah, Muhammad; Unsöld, Andreas; Schilling, Martin; Heinrich, Christoph; Takors, Ralf
    Increasing markets for biopharmaceuticals, including monoclonal antibodies, have triggered a permanent need for bioprocess optimization. Biochemical engineering approaches often include the optimization of basal and feed media to improve productivities of Chinese hamster ovary (CHO) cell cultures. Often, l‐tyrosine is added as dipeptide to deal with its poor solubility at neutral pH. Showcasing IgG1 production with CHO cells, we investigated the supplementation of three l‐tyrosine (TYR, Y) containing dipeptides: glycyl‐l‐tyrosine (GY), l‐tyrosyl‐l‐valine (YV), and l‐prolyl‐l‐tyrosine (PY). While GY and YV led to almost no phenotypic and metabolic differences compared to reference samples, PY significantly amplified TYR uptake thus maximizing related catabolic activity. Consequently, ATP formation was roughly four times higher upon PY application than in reference samples.
  • Thumbnail Image
    ItemOpen Access
    Compartment‐specific 13C metabolic flux analysis reveals boosted NADPH availability coinciding with increased cell‐specific productivity for IgG1 producing CHO cells after MTA treatment
    (2021) Wijaya, Andy Wiranata; Verhagen, Natascha; Teleki, Attila; Takors, Ralf
    Increasing cell‐specific productivities (CSPs) for the production of heterologous proteins in Chinese hamster ovary (CHO) cells is an omnipresent need in the biopharmaceutical industry. The novel additive 5′‐deoxy‐5′‐(methylthio)adenosine (MTA), a chemical degradation product of S‐(5′‐adenosyl)‐ʟ‐methionine (SAM) and intermediate of polyamine biosynthesis, boosts the CSP of IgG1‐producing CHO cells by 50%. Compartment‐specific 13C flux analysis revealed a fundamental reprogramming of the central metabolism after MTA addition accompanied by cell‐cycle arrest and increased cell volumes. Carbon fluxes into the pentose‐phosphate pathway increased 22 fold in MTA‐treated cells compared to that in non‐MTA‐treated reference cells. Most likely, cytosolic ATP inhibition of phosphofructokinase mediated the carbon detour. Mitochondrial shuttle activity of the α‐ketoglurarate/malate antiporter (OGC) reversed, reducing cytosolic malate transport. In summary, NADPH supply in MTA‐treated cells improved three fold compared to that in non‐MTA‐treated cells, which can be regarded as a major factor for explaining the boosted CSPs.
  • Thumbnail Image
    ItemOpen Access
    Compartment-specific metabolome labeling enables the identification of subcellular fluxes that may serve as promising metabolic engineering targets in CHO cells
    (2021) Wijaya, Andy Wiranata; Ulmer, Andreas; Hundsdorfer, Lara; Verhagen, Natascha; Teleki, Attila; Takors, Ralf
    13C labeling data are used to calculate quantitative intracellular flux patterns reflecting in vivo conditions. Given that approaches for compartment-specific metabolomics exist, the benefits they offer compared to conventional non-compartmented 13C flux studies remain to be determined. Using compartment-specific labeling information of IgG1-producing Chinese hamster ovary cells, this study investigated differences of flux patterns exploiting and ignoring metabolic labeling data of cytosol and mitochondria. Although cellular analysis provided good estimates for the majority of intracellular fluxes, half of the mitochondrial transporters, and NADH and ATP balances, severe differences were found for some reactions. Accurate flux estimations of almost all iso-enzymes heavily depended on the sub-cellular labeling information. Furthermore, key discrepancies were found for the mitochondrial carriers vAGC1 (Aspartate/Glutamate antiporter), vDIC (Malate/H+ symporter), and vOGC (α-ketoglutarate/malate antiporter). Special emphasis is given to the flux of cytosolic malic enzyme (vME): it could not be estimated without the compartment-specific malate labeling information. Interesting enough, cytosolic malic enzyme is an important metabolic engineering target for improving cell-specific IgG1 productivity. Hence, compartment-specific 13C labeling analysis serves as prerequisite for related metabolic engineering studies.
  • Thumbnail Image
    ItemOpen Access
    Comprehensive analysis of C. glutamicum anaplerotic deletion mutants under defined d-glucose conditions
    (2021) Kappelmann, Jannick; Klein, Bianca; Papenfuß, Mathias; Lange, Julian; Blombach, Bastian; Takors, Ralf; Wiechert, Wolfgang; Polen, Tino; Noack, Stephan
    Wild-type C. glutamicum ATCC 13032 is known to possess two enzymes with anaplerotic (C4-directed) carboxylation activity, namely phosphoenolpyruvate carboxylase (PEPCx) and pyruvate carboxylase (PCx). On the other hand, C3-directed decarboxylation can be catalyzed by the three enzymes phosphoenolpyruvate carboxykinase (PEPCk), oxaloacetate decarboxylase (ODx), and malic enzyme (ME). The resulting high metabolic flexibility at the anaplerotic node compromises the unambigous determination of its carbon and energy flux in C. glutamicum wild type. To circumvent this problem we performed a comprehensive analysis of selected single or double deletion mutants in the anaplerosis of wild-type C. glutamicum under defined d-glucose conditions. By applying well-controlled lab-scale bioreactor experiments in combination with untargeted proteomics, quantitative metabolomics and whole-genome sequencing hitherto unknown, and sometimes counter-intuitive, genotype-phenotype relationships in these mutants could be unraveled. In comparison to the wild type the four mutants C. glutamiucm Δpyc, C. glutamiucm Δpyc Δodx, C. glutamiucm Δppc Δpyc, and C. glutamiucm Δpck showed lowered specific growth rates and d-glucose uptake rates, underlining the importance of PCx and PEPCk activity for a balanced carbon and energy flux at the anaplerotic node. Most interestingly, the strain C. glutamiucm Δppc Δpyc could be evolved to grow on d-glucose as the only source of carbon and energy, whereas this combination was previously considered lethal. The prevented anaplerotic carboxylation activity of PEPCx and PCx was found in the evolved strain to be compensated by an up-regulation of the glyoxylate shunt, potentially in combination with the 2-methylcitrate cycle.
  • Thumbnail Image
    ItemOpen Access
    CRISPRi enables fast growth followed by stable aerobic pyruvate formation in Escherichia coli without auxotrophy
    (2021) Ziegler, Martin; Hägele, Lorena; Gäbele, Teresa; Takors, Ralf
    CRISPR interference (CRISPRi) was applied to enable the aerobic production of pyruvate in Escherichia coli MG1655 under glucose excess conditions by targeting the promoter regions of aceE or pdhR. Knockdown strains were cultivated in aerobic shaking flasks and the influence of inducer concentration and different sgRNA binding sites on the production of pyruvate was measured. Targeting the promoter regions of aceE or pdhR triggered pyruvate production during the exponential phase and reduced expression of aceE. In lab‐scale bioreactor fermentations, an aceE silenced strain successfully produced pyruvate under fully aerobic conditions during the exponential phase, but loss of productivity occurred during a subsequent nitrogen‐limited phase. Targeting the promoter region of pdhR enabled pyruvate production during the growth phase of cultivations, and a continued low‐level accumulation during the nitrogen‐limited production phase. Combinatorial targeting of the promoter regions of both aceE and pdhR in E. coli MG1655 pdCas9 psgRNA_aceE_234_pdhR_329 resulted in the stable aerobic production of pyruvate with non‐growing cells at YP/S  =  0.36 ± 0.029 gPyruvate/gGlucose in lab‐scale bioreactors throughout an extended nitrogen‐limited production phase.
  • Thumbnail Image
    ItemOpen Access
    Data‐driven in silico prediction of regulation heterogeneity and ATP demands of Escherichia coli in large‐scale bioreactors
    (2020) Zieringer, Julia; Wild, Moritz; Takors, Ralf
    Escherichia coli exposed to industrial‐scale heterogeneous mixing conditions respond to external stress by initiating short‐term metabolic and long‐term strategic transcriptional programs. In native habitats, long‐term strategies allow survival in severe stress but are of limited use in large bioreactors, where microenvironmental conditions may change right after said programs are started. Related on/off switching of genes causes additional ATP burden that may reduce the cellular capacity for producing the desired product. Here, we present an agent‐based data‐driven model linked to computational fluid dynamics, finally allowing to predict additional ATP needs of Escherichia coli K12 W3110 exposed to realistic large‐scale bioreactor conditions. The complex model describes transcriptional up‐ and downregulation dynamics of about 600 genes starting from subminute range covering 28 h. The data‐based approach was extracted from comprehensive scale‐down experiments. Simulating mixing and mass transfer conditions in a 54 m3 stirred bioreactor, 120,000 E. coli cells were tracked while fluctuating between different zones of glucose availability. It was found that cellular ATP demands rise between 30% and 45% of growth decoupled maintenance needs, which may limit the production of ATP‐intensive product formation accordingly. Furthermore, spatial analysis of individual cell transcriptional patterns reveal very heterogeneous gene amplifications with hot spots of 50%-80% messenger RNA upregulation in the upper region of the bioreactor. The phenomenon reflects the time‐delayed regulatory response of the cells that propagate through the stirred tank. After 4.2 h, cells adapt to environmental changes but still have to bear an additional 6% ATP demand.
  • Thumbnail Image
    ItemOpen Access
    Deciphering the adaptation of Corynebacterium glutamicum in transition from aerobiosis via microaerobiosis to anaerobiosis
    (2018) Lange, Julian; Münch, Eugenia; Müller, Jan; Busche, Tobias; Kalinowski, Jörn; Takors, Ralf; Blombach, Bastian
    Zero-growth processes are a promising strategy for the production of reduced molecules and depict a steady transition from aerobic to anaerobic conditions. To investigate the adaptation of Corynebacterium glutamicum to altering oxygen availabilities, we conceived a triple-phase fermentation process that describes a gradual reduction of dissolved oxygen with a shift from aerobiosis via microaerobiosis to anaerobiosis. The distinct process phases were clearly bordered by the bacteria’s physiologic response such as reduced growth rate, biomass substrate yield and altered yield of fermentation products. During the process, sequential samples were drawn at six points and analyzed via RNA-sequencing, for metabolite concentrations and for enzyme activities. We found transcriptional alterations of almost 50% (1421 genes) of the entire protein coding genes and observed an upregulation of fermentative pathways, a rearrangement of respiration, and mitigation of the basic cellular mechanisms such as transcription, translation and replication as a transient response related to the installed oxygen dependent process phases. To investigate the regulatory regime, 18 transcriptionally altered (putative) transcriptional regulators were deleted, but none of the deletion strains showed noticeable growth kinetics under an oxygen restricted environment. However, the described transcriptional adaptation of C. glutamicum resolved to varying oxygen availabilities provides a useful basis for future process and strain engineering.
  • Thumbnail Image
    ItemOpen Access
    Differential amino acid uptake and depletion in mono-cultures and co-cultures of Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus in a novel semi-synthetic medium
    (2022) Ulmer, Andreas; Erdemann, Florian; Mueller, Susanne; Loesch, Maren; Wildt, Sandy; Jensen, Maiken Lund; Gaspar, Paula; Zeidan, Ahmad A.; Takors, Ralf
    The mechanistic understanding of the physiology and interactions of microorganisms in starter cultures is critical for the targeted improvement of fermented milk products, such as yogurt, which is produced by Streptococcus thermophilus in co-culture with Lactobacillus delbrueckii subsp. bulgaricus. However, the use of complex growth media or milk is a major challenge for quantifying metabolite production, consumption, and exchange in co-cultures. This study developed a synthetic medium that enables the establishment of defined culturing conditions and the application of flow cytometry for measuring species-specific biomass values. Time courses of amino acid concentrations in mono-cultures and co-cultures of L. bulgaricus ATCC BAA-365 with the proteinase-deficient S. thermophilus LMG 18311 and with a proteinase-positive S. thermophilus strain were determined. The analysis revealed that amino acid release rates in co-culture were not equivalent to the sum of amino acid release rates in mono-cultures. Data-driven and pH-dependent amino acid release models were developed and applied for comparison. Histidine displayed higher concentrations in co-cultures, whereas isoleucine and arginine were depleted. Amino acid measurements in co-cultures also confirmed that some amino acids, such as lysine, are produced and then consumed, thus being suitable candidates to investigate the inter-species interactions in the co-culture and contribute to the required knowledge for targeted shaping of yogurt qualities.
  • Thumbnail Image
    ItemOpen Access
    Electron availability in CO2, CO and H2 mixtures constrains flux distribution, energy management and product formation in Clostridium ljungdahlii
    (2020) Hermann, Maria; Teleki, Attila; Weitz, Sandra; Niess, Alexander; Freund, Andreas; Bengelsdorf, Frank R.; Takors, Ralf
    Acetogens such as Clostridium ljungdahlii can play a crucial role reducing the human CO2 footprint by converting industrial emissions containing CO2, CO and H2 into valuable products such as organic acids or alcohols. The quantitative understanding of cellular metabolism is a prerequisite to exploit the bacterial endowments and to fine-tune the cells by applying metabolic engineering tools. Studying the three gas mixtures CO2 + H2, CO and CO + CO2 + H2 (syngas) by continuously gassed batch cultivation experiments and applying flux balance analysis, we identified CO as the preferred carbon and electron source for growth and producing alcohols. However, the total yield of moles of carbon (mol-C) per electrons consumed was almost identical in all setups which underlines electron availability as the main factor influencing product formation. The Wood–Ljungdahl pathway (WLP) showed high flexibility by serving as the key NAD+ provider for CO2 + H2, whereas this function was strongly compensated by the transhydrogenase-like Nfn complex when CO was metabolized. Availability of reduced ferredoxin (Fdred) can be considered as a key determinant of metabolic control. Oxidation of CO via carbon monoxide dehydrogenase (CODH) is the main route of Fdred formation when CO is used as substrate, whereas Fdred is mainly regenerated via the methyl branch of WLP and the Nfn complex utilizing CO2 + H2. Consequently, doubled growth rates, highest ATP formation rates and highest amounts of reduced products (ethanol, 2,3-butanediol) were observed when CO was the sole carbon and electron source.
  • Thumbnail Image
    ItemOpen Access
    Getting the right clones in an automated manner : an alternative to sophisticated colony-picking robotics
    (2024) Hägele, Lorena; Pfleger, Brian F.; Takors, Ralf
    In recent years, the design-build-test-learn (DBTL) cycle has become a key concept in strain engineering. Modern biofoundries enable automated DBTL cycling using robotic devices. However, both highly automated facilities and semi-automated facilities encounter bottlenecks in clone selection and screening. While fully automated biofoundries can take advantage of expensive commercially available colony pickers, semi-automated facilities have to fall back on affordable alternatives. Therefore, our clone selection method is particularly well-suited for academic settings, requiring only the basic infrastructure of a biofoundry. The automated liquid clone selection (ALCS) method represents a straightforward approach for clone selection. Similar to sophisticated colony-picking robots, the ALCS approach aims to achieve high selectivity. Investigating the time analogue of five generations, the model-based set-up reached a selectivity of 98 ± 0.2% for correctly transformed cells. Moreover, the method is robust to variations in cell numbers at the start of ALCS. Beside Escherichia coli , promising chassis organisms, such as Pseudomonas putida and Corynebacterium glutamicum , were successfully applied. In all cases, ALCS enables the immediate use of the selected strains in follow-up applications. In essence, our ALCS approach provides a ‘low-tech’ method to be implemented in biofoundry settings without requiring additional devices.
  • Thumbnail Image
    ItemOpen Access
    Growth-rate dependency of ribosome abundance and translation elongation rate in Corynebacterium glutamicum differs from that in Escherichia coli
    (2023) Matamouros, Susana; Gensch, Thomas; Cerff, Martin; Sachs, Christian C.; Abdollahzadeh, Iman; Hendriks, Johnny; Horst, Lucas; Tenhaef, Niklas; Tenhaef, Julia; Noack, Stephan; Graf, Michaela; Takors, Ralf; Nöh, Katharina; Bott, Michael
    Bacterial growth rate (µ) depends on the protein synthesis capacity of the cell and thus on the number of active ribosomes and their translation elongation rate. The relationship between these fundamental growth parameters have only been described for few bacterial species, in particular Escherichia coli . Here, we analyse the growth-rate dependency of ribosome abundance and translation elongation rate for Corynebacterium glutamicum , a gram-positive model species differing from E. coli by a lower growth temperature optimum and a lower maximal growth rate. We show that, unlike in E. coli , there is little change in ribosome abundance for µ <0.4 h -1 in C. glutamicum and the fraction of active ribosomes is kept above 70% while the translation elongation rate declines 5-fold. Mathematical modelling indicates that the decrease in the translation elongation rate can be explained by a depletion of translation precursors.
  • Thumbnail Image
    ItemOpen Access
    Identifying and engineering bottlenecks of autotrophic isobutanol formation in recombinant C. ljungdahlii by systemic analysis
    (2021) Hermann, Maria; Teleki, Attila; Weitz, Sandra; Niess, Alexander; Freund, Andreas; Bengelsdorf, Frank Robert; Dürre, Peter; Takors, Ralf
    Clostridium ljungdahlii (C. ljungdahlii, CLJU) is natively endowed producing acetic acid, 2,3-butandiol, and ethanol consuming gas mixtures of CO2, CO, and H2 (syngas). Here, we present the syngas-based isobutanol formation using C. ljungdahlii harboring the recombinant amplification of the “Ehrlich” pathway that converts intracellular KIV to isobutanol. Autotrophic isobutanol production was studied analyzing two different strains in 3-L gassed and stirred bioreactors. Physiological characterization was thoroughly applied together with metabolic profiling and flux balance analysis. Thereof, KIV and pyruvate supply were identified as key “bottlenecking” precursors limiting preliminary isobutanol formation in CLJU[KAIA] to 0.02 g L-1. Additional blocking of valine synthesis in CLJU[KAIA]:ilvE increased isobutanol production by factor 6.5 finally reaching 0.13 g L-1. Future metabolic engineering should focus on debottlenecking NADPH availability, whereas NADH supply is already equilibrated in the current generation of strains.
  • Thumbnail Image
    ItemOpen Access
    Investigation of tracer gas transport in a new numerical model of lung acini
    (2022) Schmidt, Christoph; Joppek, Christoph; Trinkmann, Frederik; Takors, Ralf; Cattaneo, Giorgio; Port, Johannes
    Obstructive pulmonary diseases are associated with considerable morbidity. For an early diagnosis of these diseases, inert gas washouts can potentially be used. However, the complex interaction between lung anatomy and gas transport mechanisms complicates data analysis. In order to investigate this interaction, a numerical model, based on the finite difference method, consisting of two lung units connected in parallel, was developed to simulate the tracer gas transport within the human acinus. Firstly, the geometries of the units were varied and the diffusion coefficients ( D ) were kept constant. Secondly, D was changed and the geometry was kept constant. Furthermore, simple monoexponential growth functions were applied to evaluate the simulated data. In 109 of the 112 analyzed curves, monoexponential function matched simulated data with an accuracy of over 90%, potentially representing a suitable numerical tool to predict transport processes in further model extensions. For total flows greater than 5 × 10 -4  ml/s, the exponential growth constants increased linearly with linear increasing flow to an accuracy of over 95%. The slopes of these linear trend lines of 1.23 µl -1 ( D  = 0.6 cm 2 /s), 1.69 µl -1 ( D  = 0.3 cm 2 /s), and 2.25 µl -1 ( D  = 0.1 cm 2 /s) indicated that gases with low D are more sensitive to changes in flows than gases with high D .
  • Thumbnail Image
    ItemOpen Access
    Isobutanol production by autotrophic acetogenic bacteria
    (2021) Weitz, Sandra; Hermann, Maria; Linder, Sonja; Bengelsdorf, Frank R.; Takors, Ralf; Dürre, Peter
    Two different isobutanol synthesis pathways were cloned into and expressed in the two model acetogenic bacteria Acetobacterium woodii and Clostridium ljungdahlii. A. woodii is specialized on using CO2 + H2 gas mixtures for growth and depends on sodium ions for ATP generation by a respective ATPase and Rnf system. On the other hand, C. ljungdahlii grows well on syngas (CO + H2 + CO2 mixture) and depends on protons for energy conservation. The first pathway consisted of ketoisovalerate ferredoxin oxidoreductase (Kor) from Clostridium thermocellum and bifunctional aldehyde/alcohol dehydrogenase (AdhE2) from C. acetobutylicum. Three different kor gene clusters are annotated in C. thermocellum and were all tested. Only in recombinant A. woodii strains, traces of isobutanol could be detected. Additional feeding of ketoisovalerate increased isobutanol production to 2.9 mM under heterotrophic conditions using kor3 and to 1.8 mM under autotrophic conditions using kor2. In C. ljungdahlii, isobutanol could only be detected upon additional ketoisovalerate feeding under autotrophic conditions. kor3 proved to be the best suited gene cluster. The second pathway consisted of ketoisovalerate decarboxylase from Lactococcus lactis and alcohol dehydrogenase from Corynebacterium glutamicum. For increasing the carbon flux to ketoisovalerate, genes encoding ketol-acid reductoisomerase, dihydroxy-acid dehydratase, and acetolactate synthase from C. ljungdahlii were subcloned downstream of adhA. Under heterotrophic conditions, A. woodii produced 0.2 mM isobutanol and 0.4 mM upon additional ketoisovalerate feeding. Under autotrophic conditions, no isobutanol formation could be detected. Only upon additional ketoisovalerate feeding, recombinant A. woodii produced 1.5 mM isobutanol. With C. ljungdahlii, no isobutanol was formed under heterotrophic conditions and only 0.1 mM under autotrophic conditions. Additional feeding of ketoisovalerate increased these values to 1.5 mM and 0.6 mM, respectively. A further increase to 2.4 mM and 1 mM, respectively, could be achieved upon inactivation of the ilvE gene in the recombinant C. ljungdahlii strain. Engineering the coenzyme specificity of IlvC of C. ljungdahlii from NADPH to NADH did not result in improved isobutanol production.
  • Thumbnail Image
    ItemOpen Access
    Methylthioadenosine (MTA) boosts cell‐specific productivities of Chinese hamster ovary cultures : dosage effects on proliferation, cell cycle and gene expression
    (2020) Verhagen, Natascha; Zieringer, Julia; Takors, Ralf
    A major goal for process and cell engineering in the biopharmaceutical industry is enhancing production through increasing volumetric and cellspecific productivities (CSP). Here, we present 50-deoxy-50-(methylthio)adenosine (MTA), the degradation product of S-(50-adenosyl)-L-methionine (SAM), as a highly attractive native additive which can boost CSP by 79% when added to exponentially growing cells at a concentration of 250-300 lM. Notably, cell viability and cell size remain higher than in non-treated cultures. In addition, cell cycle arrests first in S-, then in G2-phase before levelling out compared to non-treated cultivations. Intensive differential gene analysis reveals that expression of genes for cytoskeleton mediated proteins and vesicle transport is amplified by treatment. Furthermore, the interaction of MTA with cell proliferation additionally stimulated recombinant protein formation. The results may serve as a promising starting point for further developments in process and cell engineering to boost productivity.
  • Thumbnail Image
    ItemOpen Access
    Micro‐aerobic production of isobutanol with engineered Pseudomonas putida
    (2021) Ankenbauer, Andreas; Nitschel, Robert; Teleki, Attila; Müller, Tobias; Favilli, Lorenzo; Blombach, Bastian; Takors, Ralf
    Pseudomonas putida KT2440 is emerging as a promising microbial host for biotechnological industry due to its broad range of substrate affinity and resilience to physicochemical stresses. Its natural tolerance towards aromatics and solvents qualifies this versatile microbe as promising candidate to produce next generation biofuels such as isobutanol. In this study, we scaled‐up the production of isobutanol with P. putida from shake flask to fed‐batch cultivation in a 30 L bioreactor. The design of a two‐stage bioprocess with separated growth and production resulted in 3.35 gisobutanol L-1. Flux analysis revealed that the NADPH expensive formation of isobutanol exceeded the cellular catabolic supply of NADPH finally causing growth retardation. Concomitantly, the cell counteracted to the redox imbalance by increased formation of 2‐ketogluconic thereby providing electrons for the respiratory ATP generation. Thus, P. putida partially uncoupled ATP formation from the availability of NADH. The quantitative analysis of intracellular pyridine nucleotides NAD(P)+ and NAD(P)H revealed elevated catabolic and anabolic reducing power during aerobic production of isobutanol. Additionally, the installation of micro‐aerobic conditions during production doubled the integral glucose‐to‐isobutanol conversion yield to 60 mgisobutanol gglucose-1 while preventing undesired carbon loss as 2‐ketogluconic acid.
  • Thumbnail Image
    ItemOpen Access
    Mimicked mixing-induced heterogeneities of industrial bioreactors stimulate long-lasting adaption programs in ethanol-producing yeasts
    (2023) Minden, Steven; Aniolek, Maria; Noorman, Henk; Takors, Ralf
    Commercial-scale bioreactors create an unnatural environment for microbes from an evolutionary point of view. Mixing insufficiencies expose individual cells to fluctuating nutrient concentrations on a second-to-minute scale while transcriptional and translational capacities limit the microbial adaptation time from minutes to hours. This mismatch carries the risk of inadequate adaptation effects, especially considering that nutrients are available at optimal concentrations on average. Consequently, industrial bioprocesses that strive to maintain microbes in a phenotypic sweet spot, during lab-scale development, might suffer performance losses when said adaptive misconfigurations arise during scale-up. Here, we investigated the influence of fluctuating glucose availability on the gene-expression profile in the industrial yeast Ethanol Red™. The stimulus-response experiment introduced 2 min glucose depletion phases to cells growing under glucose limitation in a chemostat. Even though Ethanol Red™ displayed robust growth and productivity, a single 2 min depletion of glucose transiently triggered the environmental stress response. Furthermore, a new growth phenotype with an increased ribosome portfolio emerged after complete adaptation to recurring glucose shortages. The results of this study serve a twofold purpose. First, it highlights the necessity to consider the large-scale environment already at the experimental development stage, even when process-related stressors are moderate. Second, it allowed the deduction of strain engineering guidelines to optimize the genetic background of large-scale production hosts.
  • «
  • 1 (current)
  • 2
  • »
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart