Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Tay, JingZhi"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Computational optimisation of urban design models : a systematic literature review
    (2024) Tay, JingZhi; Ortner, Frederick Peter; Wortmann, Thomas; Aydin, Elif Esra
    The densification of urban spaces globally has contributed to a need for design tools supporting the planning of more sustainable, efficient, and liveable cities. Urban Design Optimisation (UDO) responds to this challenge by providing a means to explore many design solutions for a district, evaluate multiple objectives, and make informed selections from many Pareto-efficient solutions. UDO distinguishes itself from other forms of design optimisation by addressing the challenges of incorporating a wide range of planning goals, managing the complex interactions among various urban datasets, and considering the social-technical aspects of urban planning involving multiple stakeholders. Previous reviews focusing on specific topics within UDO do not sufficiently address these challenges. This PRISMA systematic literature review provides an overview of research on topics related to UDO from 2012 to 2022, with articles analysed across seven descriptive categories. This paper presents a discussion on the state-of-the-art and identified gaps present in each of the seven categories. Finally, this paper argues that additional research to improve the socio-technical understanding and usability of UDO would require: (i) methods of optimisation across multiple models, (ii) interfaces that address a multiplicity of stakeholders, (iii) exploration of frameworks for scenario building and backcasting, and (iv) advancing AI applications for UDO, including generalizable surrogates and user preference learning.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart