Browsing by Author "Teves, Harald"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Open Access Modellgestützte Entwicklung eines mehrstufigen Verfahrens zur enzymatischen Synthese enantiomerenreiner Aminosäuren(2008) Teves, Harald; Reuss, Matthias (Prof. Dr.-Ing.)Das Ziel dieser Arbeit war die Entwicklung eines vollständigen Verfahrens zur Synthese von enantiomerenreinen L-Aminosäuren durch Biotransformation mit immobilisierten Enzymen. Als Modellsystem wurde die zweistufige Hydrolyse von D,L-Benzylhydantoin über L-Carbamoylphenylalanin zu L-Phenylalanin gewählt. Die erste Stufe wurde durch das enantioselektive Enzym Hydantoinase katalysiert und die zweite durch das enantiospezifische Enzym L-Carbamoylase. Ein Schwerpunkt war die Analyse und Modellierung des gegebenen Reaktionssystems, das die reversible Reaktion von D- bzw. L-Benzylhydantoin zu D- und L-Caramoylphenylalanin, die irreversible Reaktion von L-Carbamoylphenylalanin zu L-Phenylalanin sowie die Racemisierung des Substrats Benzylhydantoin umfasste. Die Parameter in den enzymkinetischen Gleichungen wurden aus Anfangsreaktionsraten und zeitlichen Konzentrationsverläufen abgeschätzt. Da in einer Versuchsanlage an poröse Partikel immobilisierte Enzyme Verwendung fanden, wurden die enzymkinetischen Modelle um Gleichungen für den externen Transport der Reaktanten an die Partikeloberfläche und den internen Transport in den Partikeln erweitert. Die Racemisierung des Substrats Benzylhydantoin wurde mit zwei Modellen beschrieben, die sich in ihrem Detaillierungsgrad unterschieden. Während das erste Modell die Dissoziation des Benzylhydantoins berücksichtigte und die basenkatalysierte Racemisierung in wässriger Lösung von der Racemisierung an einem Ionenaustauscher differenzierte, vereinigte das zweite Modell die verschiedenen Mechanismen zu einer reversiblen Reaktion mit Hin- und Rückreaktion jeweils pseudo-erster Ordnung. Wichtigstes Ergebnis des detaillierten Modells war die Beschleunigung der Racemisierung durch Verschiebung des pH-Werts, wobei der durch Katalyse am Ionenaustauscher erzielte Geschwindigkeitszuwachs im Vergleich zur spontanen Reaktion exponentiell anstieg. Auf der reaktionstechnischen Analyse bauten die Gestaltung einer Versuchsanlage im Labormaßstab und die Erstellung eines mathematischen Prozessmodells dieser Versuchsanlage auf. Mit Rücksicht auf die begrenzte Aktivität der Enzymimmobilisate und die geringe Löslichkeit des Benzylhydantoins wurde das Verfahren, welches drei Operationen umfasste, absatzweise betrieben: Auflösung von D,L-Benzylhydantoin in einem gerührten Membranreaktor, zweistufige enzymatische L-Phenylalanin Synthese in einem Festbettreaktor mit immobilisierter Hydantoinase und L-Carbamoylase sowie Racemisierung des nicht abreagierten Substrats D-Benzylhydantoin in einem zweiten mit starkem Anionenaustauscher gefüllten Festbettreaktor. Alle drei Apparate waren hintereinandergeschaltet und bildeten einen geschlossenen Kreislauf. Optional erfolgte eine nachgeschaltete Aufreinigung des Produkts L-Phenylalanin durch Elektrodialyse. Im Vorfeld zu den experimentellen Arbeiten an der Versuchsanlage - und später auch diese begleitend - wurde ein mathematisches Modell des gesamten Verfahrens erstellt und mit Versuchsdaten parametriert. Dieses Modell bildete die Auflösung von festem Benzylhydantoin in einem ideal durchmischten Membranreaktor, die enzymatische Umsetzung im ersten und anschließende Racemisierung im zweiten Festbettreaktor sowie die Rückführung in den Membranreaktor ab. Bezüglich der Festbettreaktoren wurden die Stoffbilanzen getrennt für das Hohlraumvolumen sowie die porösen Partikel der Schüttung aufgestellt. Verkoppelt waren sie durch den Stoffübergang an der Oberfläche eines jeden Partikels. In den porösen Partikeln katalysierten die an der inneren Oberfläche immobilisierten Enzyme die im vorangehenden beschriebenen Reaktionen. Es resultierten hauptsächlich partielle Differentialgleichungen, die mit einem finite Volumen Verfahren (TVD) örtlich diskretisiert und dem numerischen Integrator LIMEX gelöst wurden. Da die vollständige Umsetzung des racemischen Substrats D,L-Benzylhydantoin zum enantiomerenreinen Produkt L-Phenylalanin wesentlich von der Racemisierung abhing, kam dieser Umlagerungsreaktion eine zentrale Bedeutung zu. Es zeigte sich, dass eine Steigerung der Produktausbeute eine überproportionale Erhöhung der Ionenaustauschermasse erforderte. Andererseits bedeutete die Erhöhung der Ionenaustauschermasse einen zunehmenden Verlust an Produkt, da es durch Bindung an den Ionenaustauscher in der Reaktionslösung abgereichert wurde. Bezüglich des theoretisch möglichen Enantiomerenüberschusses von 100 % bei vollständiger Umsetzung des racemischen Substrats erwies sich beim gegebenen pH-Wert auch mit maximaler Racemisierungsgeschwindigkeit die langsame Rückreaktion von D-Carbamoylphenylalanin zu D-Benzylhydantoin als limitierend, und es resultierte ein maximaler Enantiomerenüberschuss von 64 %. Simulationsergebnisse belegten den vernachlässigbaren Einfluss der Auflösungskinetik des Benzylhydantoins auf das Gesamtgeschehen.