Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Tietze, Thomas"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Magnetism of unconventional nanoscaled materials : an X-ray circular dichroism and muon spin rotation study
    (2014) Tietze, Thomas; Goering, Eberhard (PD Dr.)
    The physical properties of nanoparticles deviate strongly from its bulk counterparts. In particular, the magnetic properties change strongly due to an elevated number of surface compared to bulk atoms. As a consequence the orbital magnetic moment in nanoparticles as well as the magnetic anisotropy is enhanced. Therefore, such nanoparticles have great potential in e.g. next generation high density data storage devices. A promising way to realize such devices is to deposit nanoparticles on graphene. Depending on the preparation conditions the templated growth of nanocluster arrays with different particle size and shape is possible. Since graphene possesses outstanding properties as well it is congruous to combine the advantages of both systems and to investigate its principle properties in more detail. Thus, one part of this work is dedicated to the size and shape dependence of electronic and magnetic properties of Ni nanoclusters on graphene. The magnetic properties were investigated using X ray Magnetic Circular Dichroism (XMCD). From the corresponding absorption spectra, the electronic structure and the nanoparticle substrate interaction could be determined. Two sets of nanoparticles were investigated, with triangular and spherical shape. For each set the size was varied. Nonmagnetic absorption spectra indicate a strong interaction between the Ni nanoclusters and the graphene substrate. The integrated absorption signal which is a measure of the number of unoccupied states in the Ni d shell decreases strongly with decreasing cluster size. This means an enhanced occupancy of the Ni d states, most likely caused by charge transfer at the Ni nanocluster/graphene interface. As a consequence the magnetic moment was much smaller than expected for nanoclusters for all samples investigated. The smallest value obtained was only 50% of the respective bulk magnetic moment. The magnetic moment increases disproportionally and converges towards bulk properties above 2 ML. No significant shape dependence was observed. This part of the thesis provides a microscopic understanding of the electronic and magnetic properties of Ni nanocluster on graphene and the cluster/graphene interaction. The resulting strong change in the Ni d states is very important concerning the choice of suitable materials for graphene based spintronic devices. The second part of this thesis is dedicated to the indirect influence of the nanoparticle size on the magnetic properties of an oxide system. In particular the origin of ferromagnetism in actual nonmagnetic ZnO is discussed. The reason for ferromagnetism in ZnO depends strongly on its microscopic properties. Nanocrystalline samples with adequate small grains are mandatory. The key parameter is the so called specific grain boundary area which is defined as ratio of grain surface to grain volume. If this value exceeds a certain threshold limit, ZnO can become ferromagnetic even without doping atoms. Here the ferromagnetic coupling is suggested to occur within the grain boundaries itself. A direct proof of this hypothesis is difficult. Measurement methods like SQUID do not provide information on the microscopic origin of the sample magnetization. Therefore, this problem was addressed using low energy muon spin rotation (µSR). Here, the magnetic moment of the muon is utilized as a local magnetic probe. Three different sample systems were investigated, varying the respective grain size. Two nanograined samples with an average grain size of 31 nm and 65 nm were compared to a nonmagnetic reference ZnO single crystal. A detailed TEM analysis of the grain size distribution showed that in both nanograined samples a significant fraction of grains is smaller than the threshold condition. SQUID and µSR measurements show a clear relation between magnetization respectively magnetic volume fraction and the sample volume occupied by grain boundaries. For larger grain boundary volume a larger saturation magnetization and µSR related magnetic volume fraction was found. However, the nonmagnetic single crystal reference showed neither significant magnetization nor magnetic volume fraction. This study proofs that ferromagnetism in undoped ZnO is indeed an intrinsic effect and that its origin is located within the grain boundaries.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart