Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Tillmann, Wolfgang"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Experimental investigations of micro-meso damage evolution for a Co/WC-type tool material with application of digital image correlation and machine learning
    (2021) Schneider, Yanling; Zielke, Reiner; Xu, Chensheng; Tayyab, Muhammad; Weber, Ulrich; Schmauder, Siegfried; Tillmann, Wolfgang
    Commercial Co/WC/diamond composites are hard metals and very useful as a kind of tool material, for which both ductile and quasi-brittle behaviors are possible. This work experimentally investigates their damage evolution dependence on microstructural features. The current study investigates a different type of Co/WC-type tool material which contains 90 vol.% Co instead of the usual <50 vol.%. The studied composites showed quasi-brittle behavior. An in-house-designed testing machine realizes the in-situ micro-computed tomography (µCT) under loading. This advanced equipment can record local damage in 3D during the loading. The digital image correlation technique delivers local displacement/strain maps in 2D and 3D based on tomographic images. As shown by nanoindentation tests, matrix regions near diamond particles do not possess higher hardness values than other regions. Since local positions with high stress are often coincident with those with high strain, diamonds, which aim to achieve composites with high hardnesses, contribute to the strength less than the WC phase. Samples that illustrated quasi-brittle behavior possess about 100-130 MPa higher tensile strengths than those with ductile behavior. Voids and their connections (forming mini/small cracks) dominant the detected damages, which means void initiation, growth, and coalescence should be the damage mechanisms. The void appears in the form of debonding. Still, it is uncovered that debonding between Co-diamonds plays a major role in provoking fatal fractures for composites with quasi-brittle behavior. An optimized microstructure should avoid diamond clusters and their local volume concentrations. To improve the time efficiency and the object-identification accuracy in µCT image segmentation, machine learning (ML), U-Net in the convolutional neural network (deep learning), is applied. This method takes only about 40 min. to segment more than 700 images, i.e., a great improvement of the time efficiency compared to the manual work and the accuracy maintained. The results mentioned above demonstrate knowledge about the strengthening and damage mechanisms for Co/WC/diamond composites with >50 vol.% Co. The material properties for such tool materials (>50 vol.% Co) is rarely published until now. Efforts made in the ML part contribute to the realization of autonomous processing procedures in big-data-driven science applied in materials science.
  • Thumbnail Image
    ItemOpen Access
    A numerical method to improve the representativeness of real microstructure cut-outs applied in finite element simulations
    (2021) Schneider, Yanling; Wasserbäch, Werner; Schmauder, Siegfried; Zhou, Zhangjian; Zielke, Reiner; Tillmann, Wolfgang
    To improve the representativeness of a real microstructural cut-out for modeling purposes, a numerical method named as “boundary pixel color alteration (BPCA)” is presented to modify measured 2D microstructure cut-outs. Its physical background is related to the phase growth. For the application, the precondition is that the representativeness of the microstructure is already satisfied to a certain extent. This method resolves the problem that the phase composition of a small cut-out can have a large discrepancy to the real one. The main idea is to change the pixel color among neighboring pixels belonging to different phases. Our process simultaneously maintains most of the characteristics of the original morphology and is applicable for nearly all kinds of multi-phase or polycrystalline metallic alloys, as well. From our axisymmetric finite element (FE) simulations (ABAQUS ) applied with 2D real microstructures, it shows that the volume ratios of microstructural phases, as a function of the structure position to the symmetric axis, converge to phase area ratios in the 2D cut-out, even though the axisymmetric element volume is position dependent. A mathematical proof provides the reason for the aforementioned convergence. As examples to achieve real compositions and to numerically prove the aforementioned convergence, four different materials including multiphase polycrystals are implemented. An improvement of the predicted FE result is presented for the application of a modified microstructure (with a higher representativeness) compared to the original one.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart