Browsing by Author "Tran, Trung-Hieu"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access FL-MISR : fast large-scale multi-image super-resolution for computed tomography based on multi-GPU acceleration(2021) Sun, Kaicong; Tran, Trung-Hieu; Guhathakurta, Jajnabalkya; Simon, SvenMulti-image super-resolution (MISR) usually outperforms single-image super-resolution (SISR) under a proper inter-image alignment by explicitly exploiting the inter-image correlation. However, the large computational demand encumbers the deployment of MISR in practice. In this work, we propose a distributed optimization framework based on data parallelism for fast large-scale MISR using multi-GPU acceleration named FL-MISR. The scaled conjugate gradient (SCG) algorithm is applied to the distributed subfunctions and the local SCG variables are communicated to synchronize the convergence rate over multi-GPU systems towards a consistent convergence. Furthermore, an inner-outer border exchange scheme is performed to obviate the border effect between neighboring GPUs. The proposed FL-MISR is applied to the computed tomography (CT) system by super-resolving the projections acquired by subpixel detector shift. The SR reconstruction is performed on the fly during the CT acquisition such that no additional computation time is introduced. FL-MISR is extensively evaluated from different aspects and experimental results demonstrate that FL-MISR effectively improves the spatial resolution of CT systems in modulation transfer function (MTF) and visual perception. Comparing to a multi-core CPU implementation, FL-MISR achieves a more than 50× speedup on an off-the-shelf 4-GPU system.Item Open Access A GPU-accelerated light-field super-resolution framework based on mixed noise model and weighted regularization(2022) Tran, Trung-Hieu; Sun, Kaicong; Simon, SvenLight-field (LF) super-resolution (SR) plays an essential role in alleviating the current technology challenge in the acquisition of a 4D LF, which assembles both high-density angular and spatial information. Due to the algorithm complexity and data-intensive property of LF images, LFSR demands a significant computational effort and results in a long CPU processing time. This paper presents a GPU-accelerated computational framework for reconstructing high-resolution (HR) LF images under a mixed Gaussian-Impulse noise condition. The main focus is on developing a high-performance approach considering processing speed and reconstruction quality. From a statistical perspective, we derive a joint ℓ1- ℓ2data fidelity term for penalizing the HR reconstruction error taking into account the mixed noise situation. For regularization, we employ the weighted non-local total variation approach, which allows us to effectively realize LF image prior through a proper weighting scheme. We show that the alternating direction method of the multipliers algorithm (ADMM) can be used to simplify the computation complexity and results in a high-performance parallel computation on the GPU Platform. An extensive experiment is conducted on both synthetic 4D LF dataset and natural image dataset to validate the proposed SR model’s robustness and evaluate the accelerated optimizer’s performance. The experimental results show that our approach achieves better reconstruction quality under severe mixed-noise conditions as compared to the state-of-the-art approaches. In addition, the proposed approach overcomes the limitation of the previous work in handling large-scale SR tasks. While fitting within a single off-the-shelf GPU, the proposed accelerator provides an average speedup of 2.46 ×and 1.57 ×for ×2and ×3SR tasks, respectively. In addition, a speedup of 77×is achieved as compared to CPU execution.