Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Traub, Otto"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Comparative characterization of the 21-kD and 26-kD gap junction proteins in murine liver and cultured hepatocytes
    (1989) Traub, Otto; Look, Jutta; Dermietzel, Rolf; Brümmer, Franz; Hülser, Dieter F.; Willecke, Klaus
    Affinity-purified antibodies to mouse liver 26- and 21-kD gap junction proteins have been used to characterize gap junctions in liver and cultured hepatocytes. Both proteins are colocalized in the same gap junction plaques as shown by double immunofluorescence and immunoelectron microscopy. In the lobules of rat liver, the 21-kD immunoreactivity is detected as a gradient of fluorescent spots on apposing plasma membranes, the maximum being in the periportal zone and a faint reaction in the perivenous zone. In contrast, the 26-kD immunoreactivity is evenly distributed in fluorescent spots on apposing plasma membranes throughout the rat liver lobule. Immunoreactive sites with anti-21 kD shown by immunofluorescence are also present in exocrine pancreas, proximal tubules of the kidney, and the epithelium of small intestine. The 21-kD immunoreactivity was not found in thin sections of myocardium and adult brain cortex. Subsequent to partial rat hepatectomy, both the 26- and 21-kD proteins first decrease and after approximately 2 d increase again. By comparison of the 26- and 21-kD immunoreactivity in cultured embryonic mouse hepatocytes, we found (a) the same pattern of immunoreactivity on apposing plasma membranes and colocalization within the same plaque, (b) a similar decrease after 1 d and subsequent increase after 3 d of both proteins, (c) cAMP-dependent in vitro phosphorylation of the 26-kD but not of the 21-kD protein, and (d) complete inhibition of intercellular transfer of Lucifer Yellow in all hepatocytes microinjected with anti-26 kD and, in most cases, partial inhibition of dye transfer after injection of anti-21 kD. Our results indicate that both the 26-kD and the 21-kD proteins are functional gap junction proteins.
  • Thumbnail Image
    ItemOpen Access
    Immunochemical and electrophysiological characterization of murine connexin40 and -43 in mouse tissues and transfected human cells
    (1994) Traub, Otto; Eckert, Reiner; Lichtenberg-Fraté, Hella; Elfgang, Claudia; Bastide, Bruno; Scheidtmann, Karl Heinz; Hülser, Dieter F.; Willecke, Klaus
    Human HeLa or SkHep1 cells, defective in intercellular communication through gap junctions, were transfected with coding sequences of murine connexin40 (Cx40) and -43. The transfected cells were restored in gap junctional coupling as shown by 100-fold increased electrical conductance. When studied by the double whole-cell patch-clamp technique, Cx40 HeLa transfectans exhibited single channel conductances of γ=121 ± 7 pS and γ=153 ± 5 pS. They were voltage gated with an equivalent gating charge of z=4.0 ± 0.5 for a voltage of half-maximal inactivation U 9= 44 ± 7 mV. The corresponding values or connexin43 (Cx43) HeLa transfectants are: γ=60 ± 4 pS and γ=40 ± 2 pS as well as z=3.7 ± 0.8 and U 0 = 73 ± 7 mV. Transfer of the dye Lucifer Yellow was always considerably lower in Cx4- than in Cx43-transfectants though their total junctional conductance was similar or even higher than for Cx43-transfectants.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart