Browsing by Author "Vögele, Stefan"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Linking qualitative scenarios with quantitative energy models: knowledge integration in different methodological designs(2021) Prehofer, Sigrid; Kosow, Hannah; Naegler, Tobias; Pregger, Thomas; Vögele, Stefan; Weimer-Jehle, WolfgangLinking qualitative scenarios with quantitative models is a common approach to integrate assumptions on possible future societal contexts into modeling. But reflection on how and to what degree knowledge is effectively integrated during this endeavor does not generally take place. In this paper, we reflect on the performance of a specific hybrid scenario approach (qualitative Cross-Impact Balance analysis, CIB, linked with quantitative energy models) concerning knowledge integration through eleven different process steps. In order to guide the scenario community in applying this approach, we reflect on general methodological features as well as different design options. We conceptualize different forms of interdisciplinary knowledge integration (compiling, combining and synthesizing) and analyze how and to what degree knowledge about society and uncertainty are integrated into scenario process and products. In addition, we discuss trade-offs regarding design choices and forms of knowledge integration. On the basis of three case studies we identify two general designs of linking which build on each other (basic and extended design) and which differ in essence regarding the balance of power between the CIB and the energy modeling. Ex-post assessment of the form of interdisciplinary knowledge integration in each step revealed that specific method properties of CIB as well as the interaction with additional quantitative as well as specific qualitative methods foster distinct forms of knowledge integration. The specific roles assigned to CIB in the hybrid scenario process can also influence the form of knowledge integration. In this study, we use a joint process scheme linking qualitative context scenarios with energy modeling. By applying our conceptualization of different forms of knowledge integration we analyze the designs´ respective potential for and respective effects on knowledge integration. Consequently, our findings can give guidance to those who are designing their own hybrid scenario processes. As this is an explorative study, it would be useful to further test our hypotheses in different hybrid scenario designs. Finally, we note that at some points in the process a more precise differentiation of three forms of knowledge integration would have been useful and propose to further differentiate and detail them in future research.Item Open Access Socio-technical energy scenarios : state-of-the-art and CIB-based approaches(2020) Weimer-Jehle, Wolfgang; Vögele, Stefan; Hauser, Wolfgang; Kosow, Hannah; Poganietz, Witold-Roger; Prehofer, SigridEnergy conversion is a major source of greenhouse gas (GHG) emissions, and energy transition scenarios are a key tool for gaining a greater understanding of the possible pathways toward climate protection. There is consensus in energy research that political and societal framework conditions will play a pivotal role in shaping energy transitions. In energy scenario construction, this perspective is increasingly acknowledged through the approach of informing model-based energy analysis with storylines about societal futures, an exercise we call “socio-technical energy scenario construction” in this article. However, there is a dispute about how to construct the storylines in a traceable, consistent, comprehensive, and reproducible way. This study aims to support energy researchers considering the use of the concept of socio-technical scenarios in two ways: first, we provide a state-of-the-art analysis of socio-technical energy scenario construction by comparing 16 studies with respect to five categories. Second, we address the dispute regarding storyline construction in energy research and examine 13 reports using the Cross-Impact Balances method. We collated researcher statements on the strengths and challenges of this method and identified seven categories of promises and challenges each.Item Open Access Uncharted water conflicts ahead : mapping the scenario space for Germany in the year 2050(2024) Kosow, Hannah; Brauner, Simon; Brumme, Anja; Hauser, Wolfgang; Hölzlberger, Fabian; Moschner, Janina; Rübbelke, Dirk; Vögele, Stefan; Weimer-Jehle, WolfgangIntroduction: In recent years, conflicts surrounding the use, distribution, and governance of surface water and groundwater in Germany have gained prominence in the media, on the political agenda, and in research. Increasing effects of climate change, such as heatwaves and drought but also extreme rain events and flooding, are considered to become more prominent and pressing in the future by different societal actors. However, it remains highly uncertain if and what type of conflicts related to water quantity Germany might actually face in the future (and how they will be framed). This paper addresses one dimension of this uncertainty - namely the future context uncertainty of possible resource and water governance conflicts. Our research contributes to an improved understanding of the uncertainty concerning future climatic, natural, land use related, political, economic, and other societal contexts that could impact water conflicts. Method: We ask: What are possible coherent context scenarios for Germany in the year 2050, and how are they expected to influence future water conflicts? In an expert-based process, we apply a qualitative and systematic method of systems analysis, cross-impact balances (CIB). With CIB, we build internally consistent scenarios of possible futures and map the future scenario space. Results and discussion: Diversity mapping with a new CIB web application of the ScenarioWizard reveals that the scenario space is rather large and diverse. The identified scenario space of n = 355 internally consistent scenarios spans four most diverse scenarios “Polycrisis,” “Economy and agriculture in crisis,” “Growth through adaptation to climate change,” and “Sustainable transformation.” Depending on the development of future contexts, the risk for future water resource and governance conflicts may unfold in various ways. We conclude that our scenario analysis provides a useful base for research and practice to address the context uncertainty of water conflicts in Germany. Our results can be used for risk assessment, to define societal framework assumptions for societal-hydrological modeling, and to develop robust and adaptive strategies and policies.