Browsing by Author "Vermeer, Pieter A. (Prof. Dr.-Ing. )"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Open Access Formulation and application of a quasi-static material point method(2012) Beuth, Lars; Vermeer, Pieter A. (Prof. Dr.-Ing. )This thesis is concerned with the analysis of quasi-static large deformation problems such as the jacking of piles where inertia and damping effects can be neglected, as opposed to dynamic problems such as pile driving. To this end, a novel type of Material Point Method (MPM) that is specifically adapted to the analysis of quasi-static large deformation problems is developed. The quasi-static MPM can be considered as an extension of the classical Updated Lagrangian Finite Element Method (UL-FEM). As with the UL-FEM, a solid body is discretised by finite elements, but in addition, the solid body is discretised by a cloud of material points which moves through the mesh in the course of a computation. The movement of material points represents the arbitrary large deformations of the solid body. The FE grid is used as with the UL-FEM to compute incremental displacements and strain increments at the locations of material points. In contrast to the UL-FEM, the mesh can be reset into its original state or changed arbitrarily if accumulated distortions of the FE grid cause numerical inaccuracies. Material and state parameters of the solid body as well as applied loads are stored in material points. In contrast to most existing implementations of the MPM, the developed quasi-static variant makes use of implicit rather than explicit time integration, which allows for a considerable reduction of the computation time in case of quasi-static problems. The development of the quasi-static MPM and its validation for simple benchmark problems is the first aim of this thesis. This includes the modelling of soil-structure interaction within the developed method, a feature that is essential to many geotechnical analyses. Here, the novel approach of extending interface elements commonly used in small-strain Finite Element analyses for use with the Material Point Method has been taken. The application of the quasi-static MPM to the simulation of cone penetration testing (CPT) forms the second aim. This widely-used in-situ test consists of pushing a steel rod with a measuring device attached to its tip into the ground with constant velocity. Numerical analyses of cone penetration testing improve the understanding of involved mechanical processes and allow to refine existing or establish new correlations between CPT measurements and soil properties. In the frame of this thesis, cone penetration testing in undrained soft clay is considered with the aim of investigating the relation between the tip resistance and the undrained shear strength of clay. Here, a new soil model that takes into consideration the anisotropic strength of clay has been applied. Thereby, the undrained shear strength of clay and thus measurements of tip resistance are reproduced with a significantly higher accuracy than with previously performed numerical analyses reported so far in literature.