Browsing by Author "Walter, Johannes R."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access A geometry- and muscle-based control architecture for synthesising biological movement(2021) Walter, Johannes R.; Günther, Michael; Häufle, Daniel F. B.; Schmitt, SynA key problem for biological motor control is to establish a link between an idea of a movement and the generation of a set of muscle-stimulating signals that lead to the movement execution. The number of signals to generate is thereby larger than the body’s mechanical degrees of freedom in which the idea of the movement may be easily expressed, as the movement is actually executed in this space. A mathematical formulation that provides a solving link is presented in this paper in the form of a layered, hierarchical control architecture. It is meant to synthesise a wide range of complex three-dimensional muscle-driven movements. The control architecture consists of a ‘conceptional layer’, where the movement is planned, a ‘structural layer’, where the muscles are stimulated, and between both an additional ‘transformational layer’, where the muscle-joint redundancy is resolved. We demonstrate the operativeness by simulating human stance and squatting in a three-dimensional digital human model (DHM). The DHM considers 20 angular DoFs and 36 Hill-type muscle-tendon units (MTUs) and is exposed to gravity, while its feet contact the ground via reversible stick-slip interactions. The control architecture continuously stimulates all MTUs (‘structural layer’) based on a high-level, torque-based task formulation within its ‘conceptional layer’. Desired states of joint angles (postural plan) are fed to two mid-level joint controllers in the ‘transformational layer’. The ‘transformational layer’ communicates with the biophysical structures in the ‘structural layer’ by providing direct MTU stimulation contributions and further input signals for low-level MTU controllers. Thereby, the redundancy of the MTU stimulations with respect to the joint angles is resolved, i.e. a link between plan and execution is established, by exploiting some properties of the biophysical structures modelled. The resulting joint torques generated by the MTUs via their moment arms are fed back to the conceptional layer, closing the high-level control loop. Within our mathematical formulations of the Jacobian matrix-based layer transformations, we identify the crucial information for the redundancy solution to be the muscle moment arms, the stiffness relations of muscle and tendon tissue within the muscle model, and the length-stimulation relation of the muscle activation dynamics. The present control architecture allows the straightforward feeding of conceptional movement task formulations to MTUs. With this approach, the problem of movement planning is eased, as solely the mechanical system has to be considered in the conceptional plan.Item Open Access Über die Regelung muskelgetriebener Systeme : ein hierarchischer und geometriebasierter Ansatz(Stuttgart : Institut für Modellierung und Simulation Biomechanischer Systeme, Computational Biophysics and Biorobotics, 2022) Walter, Johannes R.; Schmitt, Syn (Prof. Dr. rer. nat.)Computersimulationen sind heutzutage eine leistungsfähige wissenschaftliche Methode um Hypothesen unter simulierten Bedingungen zu überprüfen. Dennoch scheinen biologische Bewegungen von mehrgelenkigen Systemen mit einer Vielzahl von Muskeln das Ergebnis von neuronalen Kommandos zu sein, die zu komplex sind um algorithmisch implementiert zu werden. Daher ist die Vielfalt, sowie die Komplexität von in-silico synthetisierten, muskelgetriebenen Bewegungen noch immer gering. Ein Schlüsselproblem zur Regelung biologischer Bewegung ist es eine Verbindung zwischen einer konzeptionellen Idee der Bewegung und der Bereitstellung von Muskelstimulationen herzustellen. Dies kann sich als schwierig erweisen, da in biologischen Bewegungen die Anzahl der Muskeln größer ist als die Dimension des konzeptionellen Raums der Bewegungsidee, bspw. der mechanischen Freiheitsgraden (FHG) des Skelettsystems. In dieser Dissertation wird eine mathematische Formulierung einer hierarchischen Regelungsarchitektur vorgestellt, die eine solche Verbindung herstellt und die dazu ausgelegt ist eine Vielzahl von dreidimensionalen, muskelgetriebenen Bewegungen zu synthetisieren. Die Funktionsfähigkeit der Regelungsarchitektur ist anhand von verschiedenen menschlichen Bewegungsaufgaben demonstriert. Dies beinhaltet Simulationen von einem aufrechtem Stand, von einer Einstiegsbewegung in ein Fahrzeug, um ergonomische Rückschlüsse von einer virtuellen Designänderung zu ziehen, und von einem Sturz in eine Badewanne, um die Aufklärung eines Kriminalfalles zu unterstützen. Das zur Bewegungssynthese verwendete dreidimensionale digitale Menschmodell (DMM) besteht aus 20 Gelenk FHG und 36 Hill-Typ Muskel-Sehnen Einheiten (MSE). Das DMM ist erdähnlicher Gravitation ausgesetzt und die Füße interagieren mit dem Boden durch reversible Haft- und Gleitreibungskontakte. Die Regelungsarchitektur liefert kontinuierliche Stimulationen für alle MSE, basierend auf einer konzeptionellen Formulierung der Bewegungsaufgabe in den Koordinaten der Gelenkwinkel, der Gelenkmomente, der Positionen der Gliedmaßen oder in anderen konzeptionellen Koordinaten. Die Hierarchie der Regelungsarchitektur besteht aus drei Ebenen, der 'Konzeptionsebene', der 'Transformationsebene' und der 'Strukturebene'. In der 'Konzeptionsebene' wird die Bewegungsaufgabe in den konzeptionellen Koordinaten der Winkel, der Momente oder der Positionen formuliert und geregelt. Die Ausgangsgröße des konzeptionellen Reglers wird in einen Bewegungsplan für die Gelenkwinkel transformiert und bildet die Eingangsgröße für zwei Gelenkwinkelregler in der 'Transformationsebene'. Die 'Transformationsebene' kommuniziert mit den biologischen Strukturen in der 'Strukturebene', indem sie zum einen direkte Stimulationen für die MSE bereitstellt und zum anderen weitere Eingangssignale für strukturelle MSE Regler liefert. Dabei wird die Redundanz zwischen den MSE Stimulationen und den Gelenkwinkeln aufgelöst. Hierzu werden die Charakteristiken der modellierten biophysikalischen Strukturen, die Hebelarme der Muskeln, die Steifigkeitsverhältnisse innerhalb des Muskelmodells und die Längen-Stimulationsabhängigkeit der Aktivierungsdynamik, zu Nutze gemacht. Die von den MSE über ihre Hebelarme generierten Gelenkmomente beschleunigen die Körpersegmente und, indem die konzeptionellen Koordinaten an die Regler in der 'Konzeptionsebene' zurückgeführt werden, wird der hierarchische Regelkreis geschlossen. Die präsentierte Regelungsarchitektur erlaubt es damit eine konzeptionelle Bewegungsaufgabe direkt in Stimulationssignale der MSE zu übersetzen. Mit diesem Ansatz wird das Problem der Bewegungsplanung erleichtert, da bspw. nur das mechanische System in der konzeptionellen Planung betrachtet werden muss. Da zudem die Auflösung der Muskel-Gelenk-Redundanz nicht eindeutig ist, verbleibt zur Regelung eine 'ungeregelte Mannigfaltigkeit', mit der die Kokontraktion aller Muskeln an dem selben Gelenk genau so angepasst werden kann, dass sie nicht mit der Erfüllung der Bewegungsaufgabe in Konflikt steht. Die Ergebnisse dieser Dissertation sind vielversprechend bezüglich der Anwendung der Regelungsarchitektur für die Synthese von dynamischen und komplexen muskelgetriebenen Bewegungen, auch für robotische Systeme die mit künstlichen Muskeln ausgestattet sind. Die internen Zustände des muskuloskelettalen Models sind zu weiterführenden Analysen geeignet, wie z.B. zur Evaluation der Ergonomie oder zur Abschätzung gesundheitlicher Auswirkungen der Bewegung.