Browsing by Author "Wang, Weitian"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access SalChartQA: question-driven saliency on information visualisations(2024) Wang, Yao; Wang, Weitian; Abdelhafez, Abdullah; Elfares, Mayar; Hu, Zhiming; Bâce, Mihai; Bulling, AndreasUnderstanding the link between visual attention and user’s needs when visually exploring information visualisations is under-explored due to a lack of large and diverse datasets to facilitate these analyses. To fill this gap, we introduce SalChartQA - a novel crowd-sourced dataset that uses the BubbleView interface as a proxy for human gaze and a question-answering (QA) paradigm to induce different information needs in users. SalChartQA contains 74,340 answers to 6,000 questions on 3,000 visualisations. Informed by our analyses demonstrating the tight correlation between the question and visual saliency, we propose the first computational method to predict question-driven saliency on information visualisations. Our method outperforms state-of-the-art saliency models, improving several metrics, such as the correlation coefficient and the Kullback-Leibler divergence. These results show the importance of information needs for shaping attention behaviour and paving the way for new applications, such as task-driven optimisation of visualisations or explainable AI in chart question-answering.Item Open Access Stationary vehicle classification based on scene understanding(2024) Wang, WeitianNavigating through dense traffic situations like merging onto highways and making unprotected left turns remains a challenge for the existing autonomous driving system. Classifying vehicles into parked, stopped, and moving vehicles can benefit the decision-making system in this case because they play different roles during the vehicle-to-vehicle negotiation process. Existing works in vehicle classification focused on trivial cases and used methods that are not generalized enough. To fill this gap, after analyzing this problem and summarizing the necessary information needed for this problem, we propose a multi-modal model that can leverage information from lidar, radar, camera, and high-definition maps. To meet the complexity of our task and the needs of our model, we collect the dataset in real driving scenario and then preprocess and label it. By utilizing a pretrained vision encoder for fine-grained visual feature extraction and vision foundation model (CLIP) for scene understanding, our model achieves a 97.63% test accuracy on our dataset. Through visualization methods, experiments, and quantitative analyses, we investigate the effectiveness and importance of different encoders used in our model. We interpret and explain the successes and failures of our model to give a better understanding of how different latent features contribute to the final result. In the end, the limitations of our model and potential improvements are discussed.