Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Wappler, Peter"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Reliability study of electronic components on board-level packages encapsulated by thermoset injection molding
    (2020) Kulkarni, Romit; Soltani, Mahdi; Wappler, Peter; Guenther, Thomas; Fritz, Karl-Peter; Groezinger, Tobias; Zimmermann, André
    A drastically growing requirement of electronic packages with an increasing level of complexity poses newer challenges for the competitive manufacturing industry. Coupled with harsher operating conditions, these challenges affirm the need for encapsulated board-level (2nd level) packages. To reduce thermo-mechanical loads induced on the electronic components during operating cycles, a conformal type of encapsulation is gaining preference over conventional glob-tops or resin casting types. The availability of technology, the ease of automation, and the uncomplicated storage of raw material intensifies the implementation of thermoset injection molding for the encapsulation process of board-level packages. Reliability case studies of such encapsulated electronic components as a part of board-level packages become, thereupon, necessary. This paper presents the reliability study of exemplary electronic components, surface-mounted on printed circuit boards (PCBs), encapsulated by the means of thermoset injection molding, and subjected to cyclic thermal loading. The characteristic lifetime of the electronic components is statistically calculated after assessing the probability plots and presented consequently. A few points of conclusion are summarized, and the future scope is discussed at the end.
  • Thumbnail Image
    ItemOpen Access
    Surface optimization of micro-integrated reflective optical elements by thermoset injection molding
    (2020) Guenther, Thomas; Diegel, Lars; Roeder, Marcel; Drexler, Marc; Haybat, Mehmet; Wappler, Peter; Soltani, Mahdi; Zimmermann, André
    Thermoset materials offer a multitude of advantageous properties in terms of shrinkage and warpage as well as mechanical, thermal and chemical stability compared to thermoplastic materials. Thanks to these properties, thermosets are commonly used to encapsulate electronic components on a 2nd-level packaging prior to assembly by reflow soldering on printed circuits boards or other substrates. Based on the characteristics of thermosets to develop a distinct skin effect due to segregation during the molding process, the surface properties of injection molded thermoset components resemble optical characteristics. Within this study, molding parameters for thermoset components are analyzed in order to optimize the surface quality of injection molded thermoset components. Perspectively, in combination with a reflective coating by e.g., physical vapor deposition, such elements with micro-integrated reflective optical features can be used as optoelectronic components, which can be processed at medium-ranged temperatures up to 230 °C. The obtained results indicate the general feasibility since Ra values of 60 nm and below can be achieved. The main influencing parameters on surface quality were identified as the composition of filler materials and tool temperature.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart