Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Weidner, Dennis"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Aerodynamics of high-speed trains with respect to ground simulation
    (2022) Weidner, Dennis; Stoll, Daniel; Kuthada, Timo; Wagner, Andreas
    Wind tunnel testing is commonly used to assess and optimize the aerodynamic characteristics of high-speed trains. The train model is usually mounted above a static ground plane, but a moving ground is necessary for the correct representation of the relative motion between train and ground. This study focuses on the effect of the applied ground simulation on the aerodynamics of a high-speed train. Wind tunnel tests using a stationary and a moving ground were carried out using a 1:20 scale model of a high-speed train’s first car. Numerical simulations for two moving ground configurations are created, and the simulation setup is validated using surface pressure measurements from the wind tunnel tests. It is shown that the ground simulation has a significant effect on the drag in the considered yaw angle range. Additionally, the change in drag due to bogie fairings is evaluated and an impact of the applied ground simulation on the drag reduction is observed. The drag reduction of front and rear bogie fairings is valued similarly using a static ground, however on a moving ground the drag reduction of front bogie fairings is significantly increased. Good agreement between simulations and experiments is achieved.
  • Thumbnail Image
    ItemOpen Access
    Aerodynamics of high-speed trains with respect to ground simulation
    (2021) Weidner, Dennis; Stoll, Daniel; Kuthada, Timo; Wagner, Andreas
    The aerodynamics of a simplified 1:20 scale model of the ICE 3 high-speed train are studied. Wind tunnel tests using a stationary and a moving ground were carried out. Changes in drag due to bogie fairings are evaluated for both ground configurations and differences are highlighted. Corresponding numerical simulations using a moving ground were performed. The simulation results agree well with the experimental data.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart