Browsing by Author "Weidner, Stefanie"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access D1244: Design and construction of the first adaptive high-rise experimental building(2022) Blandini, Lucio; Haase, Walter; Weidner, Stefanie; Böhm, Michael; Burghardt, Timon; Roth, Daniel; Sawodny, Oliver; Sobek, WernerAn interdisciplinary research team of the University of Stuttgart has been working extensively since 2017 on the development and integration of adaptive systems and technologies in order to provide solutions for a more sustainable built environment. An experimental 36.5 m tall high-rise building, called D1244, was designed and completed in 2021 to show the potential of adaptive structures and facades as well as to verify on a real scale the developed systems and the related numerical predictions. The building was designed to offer a flexible experimental platform: each component is dismountable so that structural as well as facades elements can be replaced with new ones introducing new functionalities to be investigated. The structure is currently equipped with twenty-four hydraulic actuators that are installed in the columns and diagonal bracers. Strain gauge sensors and an optical tracking system are employed to monitor the state of the structural system. This paper describes the design and construction of the adaptive tower as well as the preliminary experimental testing on different scaled structural prototypes. The research work on these prototypes provided relevant information for the final set-up of the high-rise building. An outlook on future research, including the planned first structural testing phase and the implementation of adaptive facade systems, is included at the end.Item Open Access Grundlagen für die Planung von ressourcenminimalen urbanen Strukturen(2020) Weidner, Stefanie; Sobek, Werner (Prof. Dr.-Ing. Dr.-Ing. E.h. Dr. h.c.)Was zunächst als provokante Frage an seinen Schützling gedacht war, entwickelte sich zu seinem wohl berühmtesten Zitat. Bereits in den 1960er Jahren fragte Richard Buckminster Fuller: „How much does your building weigh?“ In den vorangegangenen Nachkriegsjahren stellte der Leichtbau bzw. das leichte Bauen eine Notwendigkeit dar, die für den Bausektor von essentieller Bedeutung bei der Bewältigung der bevorstehenden Herausforderungen war. Mit Einzug des Wohlstands stieg der Ressourcen- und Rohstoffverbrauch global und vor allem in den Industrienationen deutlich an und erreicht nun durch einen gleichzeitigen immensen Anstieg der Weltbevölkerung jährlich neue Höchstpunkte. Ausgehend vom Jahr 2019, werden bis 2050 weltweit 2,46 Mrd. zusätzliche Menschen in den Städten leben. Für diese Fülle von neuen Stadtbewohnern müssen dort mit den vorhandenen, begrenzten Rohstoffen und Ressourcen Lebensräume geschaffen werden. Es stellt sich die Frage, wie für mehr Menschen mit weniger Material gebaut werden kann. Daher liegt der Fokus dieser Arbeit in der Erforschung von Grundlagen zur Planung von ressourcenminimalen urbanen Strukturen zu Wohnzwecken. Die Forschungsfragen, die sich daraus ergeben, lauten: a) Welche Parameter sind für eine ressourcenspezifische Betrachtung urbaner Strukturen relevant? b) Wie verändert sich in Abhängigkeit von der Bebauungsstruktur der Ressourcen- und Flächenverbrauch von Verkehrsanlagen und Gebäuden, bei einheitlicher baulicher Dichte? c) Wie verändern sich diese Ergebnisse bei veränderter baulicher Dichte? Dazu werden die Parameter Ressourcenverbrauch Gebäude, Ressourcenverbrauch Verkehrsanlagen, Flächenverbrauch, Bebaute Dichte, Gebäudetypologie und Bebauungsstruktur als relevant in Hinblick auf eine ressourcenbezogene Betrachtung identifiziert und auf einem 1 km² großen Betrachtungsfeld in Bezug zueinander gesetzt. Dafür werden drei urbane Dichten von 400, 4.000 und 20.000 Einwohnern pro Quadratkilometer durch fünf unterschiedliche Bebauungsweisen gebildet. Diese bestehen aus einer sortenreinen Bebauung durch Einfamilienhäuser, 4-geschossige Mehrfamilienhäuser, 6-geschossige Mehrfamilien-häuser, 20-geschossige Hochhäuser und 40-geschossige Hochhäuser. Eine Untersuchung von 15 daraus entstehenden Szenarien liefert zum einen Kenntnisse über die zu berücksichtigenden Variablen und deren Auswirkungen und gibt zum anderen Aufschluss darüber, welche Bebauungsstrukturen und Gebäudetypologien unter den hier gewählten Rahmenbedingungen am ressourcenschonendsten sind. Ziel ist es, Grundlagen und -kenntnisse dafür zu schaffen, dass Städteplaner und Architekten in die Lage versetzt werden, die ressourcenspezifischen Auswirkungen unterschiedlich gewählter Bebauungsstrukturen und städtebaulicher Dichten zu begreifen. Es zeigt sich, dass unabhängig von der Dichte, eine Bebauung durch 6-geschossige Mehrfamilienhäuser stets die ressourcenschonendste Bebauungsart darstellt. Obwohl Hochhäuser durch ihren geringen Grund- und Verkehrsflächenbedarf die Ressource Boden am wenigsten beanspruchen, fallen sie aufgrund ihrer schlechten Nutzungsflächeneffizienz und durch den erhöhten Materialverbrauch hinter die Mehrfamilienhausbebauung zurück.Item Open Access Using influence matrices as a design and analysis tool for adaptive truss and beam structures(2020) Steffen, Simon; Weidner, Stefanie; Blandini, Lucio; Sobek, WernerDue to the already high and still increasing resource consumption of the building industry, the imminent scarcity of certain building materials and the occurring climate change, new resource- and emission-efficient building technologies need to be developed. This need for new technologies is further amplified by the continuing growth of the human population. One possible solution proposed by researchers at the University of Stuttgart, and which is currently further examined in the context of the Collaborative Research Centre (SFB) 1244 Adaptive Skins and Structures for the Built Environment of Tomorrow is that of adaptivity. The integration of sensors, actuators, and a control unit enables structures to react specifically to external loads, when needed (e.g., in the case of high but rare loads). For example, adaptivity in load-bearing structures allows for a reduction of deflections or a homogenization of stresses. This in its turn allows for ultra-lightweight structures with significantly reduced material consumption and emissions. To reach ultra-lightweight structures, i.e., adaptive load-bearing structures, two key questions need to be answered. First, the question of optimal actuator placement and, second, which type of typology (truss, frame, etc.) is most effective. One approach for finding the optimal configuration is that of the so-called influence matrices. Influence matrices, as introduced in this paper, are a type of sensitivity matrix, which describe how and to which extend various properties of a given load-bearing structure can be influenced by different types of actuation principles. The method of influence matrices is exemplified by a series of studies on different configurations of a truss structure.