Browsing by Author "Werner, Jürgen H. (Prof. Dr. rer. nat. habil.)"
Now showing 1 - 8 of 8
- Results Per Page
- Sort Options
Item Open Access a-Si:H/c-Si heterojunction front- and back contacts for silicon solar cells with p-type base(2010) Rostan, Philipp Johannes; Werner, Jürgen H. (Prof. Dr. rer. nat. habil.)This thesis reports on low temperature amorphous silicon back and front contacts for high-efficiency crystalline silicon solar cells with a p-type base. The back contact uses a sequence of intrinsic amorphous (i-a-Si:H) and boron doped microcrystalline (p-μc-Si:H) silicon layers fabricated by Plasma Enhanced Chemical Vapor Deposition (PECVD) and a magnetron sputtered ZnO:Al layer. The back contact is finished by evaporating Al onto the ZnO:Al and altogether prepared at a maximum temperature of 220 °C. Analysis of the electronic transport of mobile charge carriers at the back contact shows that the two high-efficiency requirements low back contact series resistance and high quality c-Si surface passivation are in strong contradiction to each other, thus difficult to achieve at the same time. The preparation of resistance- and effective lifetime samples allows one to investigate both requirements independently. Analysis of the majority charge carrier transport on complete Al/ZnO:Al/a-Si:H/c-Si back contact structures derives the resistive properties. Measurements of the effective minority carrier lifetime on a-Si:H coated wafers determines the back contact surface passivation quality. Both high-efficiency solar cell requirements together are analyzed in complete photovoltaic devices where the back contact series resistance mainly affects the fill factor and the back contact passivation quality mainly affects the open circuit voltage. The best cell equipped with a diffused emitter with random texture and a full-area a-Si:H/c-Si back contact has an independently confirmed efficiency η = 21.0 % with an open circuit voltage Voc = 681 mV and a fill factor FF = 78.7 % on an area of 1 cm². An alternative concept that uses a simplified a-Si:H layer sequence combined with Al-point contacts yields a confirmed efficiency η = 19.3 % with an open circuit voltage Voc = 655 mV and a fill factor FF = 79.5 % on an area of 2 cm². Analysis of the internal quantum efficiency shows that both types of back contacts lead to effective diffusion lengths in excess of 600 μm. An extended fill factor analysis shows that fill factor limitations for the full-area a-Si:H/c-Si contacts result from non-ideal diode behavior, ascribed to the injection dependence of the heterojunction interface recombination velocity. Analysis of the external quantum efficiency under back side illumination with different bias light intensities delivers the effective surface recombination Seff(Φ) in dependance of the illumination intensity Φ. The front contact (emitter) uses a sequence of intrinsic and phosphorous doped amorphous silicon layers together with a ZnO:Al or a SnO2:In layer and an Al front contact grid. The emitter is prepared at a maximum temperature of 220 °C. Measurements of the minority carrier lifetime on symmetric i/n-a-Si:H coated wafers judge the emitter passivation quality. The best solar cells that use a thermal oxide back side passivation with Al-point contacts and flat a-Si:H emitters have open circuit voltages up to 683 mV and efficiencies up to 17.4 %. The efficiency of such devices is limited by a low short circuit current due to the flat front side. Using the same back contact structure with random pyramid textured wafer front sides and a-Si:H emitters yields open circuit voltages up to 660 mV and efficiencies up to 18.5 %, sofar limited by a relatively low fill factor FF ≤ 74.3 %. Analysis of the external quantum efficiency underlines the excellent surface passivation properties of the amorphous emitter. Combining both, amorphous front- and back contacts yields p-type heterojunction solar cells completely fabricated at temperatures below 220 °C. The best devices reach an open circuit voltage Voc = 678 mV and an efficiency η = 18.1 % with random textured wafers, limited by low fill factors FF ∼ 75 %. Besides the cell fabrication and characterization, this thesis reveals that the inherent a-Si:H/c-Si band offset distribution with a low conduction band offset and a large valence band offset is disadvantageous for p-c-Si heterojuntion solar cells if compared to their n-c-Si counterparts. A calculation of the saturation current densities of the cell's emitter, bulk and back contact demonstrates that the n-a-Si:H/p-c-Si emitter suffers from a low built-in potential. Modelling of the back contact based on the charge carrier transport equations shows that the insertion of an i-a-Si:H layer with a thickness d ≥ 3 nm (that is mandatory for a high surface passivation quality) leads to a series resistance that is critical for usage in a solar cell. The model mainly ascribes the high back contact resistance to the large valence band offset at the heterojunction.Item Open Access Ionenassistierte Deposition von Siliciumschichten(2001) Oberbeck, Lars; Werner, Jürgen H. (Prof. Dr. rer. nat. habil.)Die vorliegende Arbeit untersucht die Wachstumsvorgänge sowie die strukturellen und elektrischen Eigenschaften von Si-Epitaxieschichten aus der ionenassistierten Deposition (IAD). Bei der IAD werden Si-Atome durch einen Elektronenstrahlverdampfer bereitgestellt und in der Gasphase durch Elektronenemission aus einem Glühdraht teilweise ionisiert; der Ionisationsgrad beträgt ca. 1 %. Eine angelegte Spannung beschleunigt diese Si+ Ionen zum Substrat hin. Die Ko-Evaporation von Bor bzw. Phosphor ermöglicht die in-situ Dotierung der Epitaxieschichten zur Herstellung von pn-Übergängen. Die epitaktische Abscheidung von Si mittels IAD ist auf beliebigen Substratorientierungen möglich. Die Defektdichte und die Minoritätsträgerdiffusionslänge hängen aber stark von der Substratorientierung und der Beschleunigungsspannung ab. Dieses Ergebnis ist auf Unterschiede in der Oberflächenrekonstruktion und in den Aktivierungsenergien für atomare Diffusionsprozesse zurückzuführen. Bei der Betrachtung der Wachstumsmechanismen bei der IAD müssen zwei Temperaturbereiche unterschieden werden: Im Temperaturbereich < 400 °C unterstützen interstitielle Atome das epitaktische Wachstum, bei höheren Temperaturen dominiert die direkte Erhöhung der Adatommobilität durch Ionenbeschuß der Wachstumsoberfläche. Die optimale Ionenenergie liegt im Bereich 8 ... 20 eV für (100)-orientierte Epitaxieschichten. Diese Arbeit vertieft wesentlich das Verständnis der Wachstumsvorgänge bei der ionenassistierten Deposition von Si-Epitaxieschichten bei Depositionstemperaturen unterhalb von 650 °C und bietet erstmals eine grundlegende Evaluierung des Potentials von Si-Niedertemperaturepitaxieschichten. Eine umfassende Untersuchung struktureller und elektrischer Eigenschaften der Epitaxieschichten hat zur Herstellung von Schichten mit sehr guten Majoritäts- und Minoritätsträgereigenschaften bei einer Rekord-Depositionsrate von 0,8 µm/min geführt.Item Open Access Jahresenergieerträge unterschiedlicher Photovoltaik-Technologien bei verschiedenen klimatischen Bedingungen(2010) Zinßer, Bastian; Werner, Jürgen H. (Prof. Dr. rer. nat. habil.)Es ist sowohl für Ingenieure als auch für Investoren sehr wichtig zu wissen, welche Energiemenge E [kWh] eine Photovoltaik(PV)-Anlage im realen Betrieb ins Stromnetz einspeist. Hintergrund ist meist die Frage nach den Kosten für den Solarstrom in €ct/kWh. Das Datenblatt gibt den Wirkungsgrad von PV-Modulen meist nur für Standardtestbedingungen im Labor an. In der Praxis verursachen erhöhte Modultemperaturen T, schwächere Einstrahlung G und ein anderes Spektrum des Lichts Abweichungen vom Wirkungsgrad unter Standardtestbedingungen; letztere kommen im realen Betrieb in Deutschland praktisch nie vor. In sonnigeren, südlichen Ländern variieren die Betriebsbedingungen noch stärker als in Deutschland, wodurch die Auswirkungen solcher Variationen auf den Jahresenergieertrag E_Jahr dort größer sind. Zur Klärung der Frage, welche PV-Technologie unter welchen klimatischen Bedingungen den höchsten Jahresenergieertrag E_Jahr erzeugt, wurden im Rahmen dieser Dissertation dreizehn verschiedene PV-Systeme unterschiedlicher Technologie in Stuttgart, Nikosia und Kairo aufgebaut und mit einer umfangreichen Messtechnik für Wetter- und Systemdaten ausgestattet. Dabei kommen sowohl mono- und multikristallines Silizium (Si) als auch verschiedene Dünnschicht-Technologien (amorphes-Si, Cu(InGa)Se2 (CIGS) und CdTe) zum Einsatz. Diese Arbeit untersucht mehrere Möglichkeiten, den Jahresenergieertrag einer PV-Anlage im Voraus zu bestimmen und vergleicht die modellierten Erträge mit den tatsächlich gemessenen. Die Felddatenauswertung bestätigt die in der Literatur oft genannten, besseren Temperaturkoeffizienten der Dünnschicht-Technologien. Die HIT-Technologie zeigt ein besseres Schwachlichtverhalten gegenüber den übrigen kristallinen Si-Technologien, die alle ein ähnliches Schwachlichtverhalten zeigen. Die CIGS-Technologie weist im Feld ein zum Labor entgegengesetztes Schwachlichtverhalten auf. Im Feld zeigen die amorphen Si- und CdTe-Technologien ein deutlich günstigeres Schwach-lichtverhalten als die kristallinen Si-Module. Den größten Einfluss auf die Bestimmung des Jahresenergieertrages E_Jahr hat, neben der örtlichen Einstrahlung G und Verschmutzung, die Toleranz der Nominalleistung P_STC der PV-Module. Nimmt man eine übliche Toleranz von ±2 bis 6% mit einem zusätzlichen Fehler von ±2% bei der Energiemessung an, so können sich zwei PV-Systeme um bis zu 8 bis 16% im Jahresenergieertrag E_Jahr unterscheiden, ohne dass dies auf die PV-Technologie zurückgeführt werden kann. Die PV-Anlagen erzeugen in Stuttgart im langjährigen Mittel einen Jahresenergieertrag E_Jahr von ca. 1000 kWh/kWp. In Nikosia ist der Ertrag mit ca. 1650 kWh/kWp um 65% größer. In Kairo beträgt der Jahresenergieertrag E_Jahr aufgrund starker Verschmutzung durch Sandstaub lediglich ca. 1300 kWh/kWp. Nach zwei Monaten vermindert der Staub die Leistung um 25%, so dass in Kairo eine regelmäßige Reinigung der Module unerlässlich ist. Als wesentliches Ergebnis dieser Arbeit lässt sich feststellen, dass die vom Hersteller angegebene Nominalleistung P_STC mit ihren Toleranzen, neben der Verschmutzung, den größten Einfluss auf den normierten Jahresenergieertrag E_Jahr einer Photovoltaikanlage hat. Die Effekte durch ein besseres Temperatur- und/oder besonders durch das Schwachlichtverhalten gehen bisher meist in den Toleranzen der Nominalleistung P_STC unter. Dennoch zeigt der Technologievergleich, dass die meisten Dünnschicht-Module und die HIT-Technologie ein besseres Temperatur- und Schwachlichtverhalten aufweisen und an wärmeren Standorten zu höheren Erträgen tendieren. Sobald exaktere Nominalleistungsbestimmungen möglich sind, werden die in dieser Arbeit entwickelten Methoden die Unterschiede im Temperatur- und Schwachlichtverhalten deutlich besser analysieren können.Item Open Access Laser doping for silicon solar cells : modeling and application(2024) Hassan, Mohamed; Werner, Jürgen H. (Prof. Dr. rer. nat. habil.)In meiner Dissertation geht es um die Simulation des Laserdotierungsprozess der Oberfläche des Siliziumwafers um hoch effizienten Solarzellen herzustellen. Die Simulation ermöglicht die genaue Vorhersage der Dimensionen eines dotierten Bereiches. Das hat ermöglicht, nicht nur die Abhängigkeit des ergebenden Schichtleitwerts von der benutzten Rastergeschwindigkeit des Laserstrahls auf die Siliziumoberfläche zu verstehen, sondern auch der Schichtleitwert einer laserdotierten Schicht basierend auf ein einfaches geometrisches Modell vorherzusagen.Item Open Access Mobility and homogeneity effects on the power conversion efficiency of solar cells(2008) Mattheis, Julian; Werner, Jürgen H. (Prof. Dr. rer. nat. habil.)The thesis on hand investigates the interplay between detailed radiation balances and charge carrier transport. The first part analyzes the role of limited carrier transport for the efficiency limits of $pn$-junction solar cells. The second part points out the influence of transport on the absorption and emission of light in inhomogeneous semiconductors. By incorporating an integral term that accounts for the repeated internal emission and reabsorption of photons (the so-called photon recycling) into the diffusion equation for the minority carriers, the first part of the thesis develops a self-consistent model that is capable of describing the power conversion efficiencies of existing devices as well as of devices in the radiative recombination limit. It is shown that the classical diode theory without the inclusion of photon recycling produces accurate results only if the minority carrier lifetime is at least ten times smaller than the radiative lifetime. The thesis shows that even in the radiative recombination limit, charge carrier transport is extremely important. The thesis thus presents a universal criterion that needs to be fulfilled by any photovoltaic material in order to obtain high power conversion efficiency. The numerical results are analyzed and compared to an analytical approximation. The thesis applies the developed model to solar cells made of crystalline silicon, amorphous silicon and Cu(In,Ga)Se$_2$ (CIGS). It shows that crystalline silicon solar cells neither have transport problems in the radiative recombination limit nor in existing devices. In Cu(In,Ga)Se$_2$ solar cells, mobilities are at most two orders of magnitude above the critical mobility and guarantee complete carrier collection only close to the radiative limit. The second part of the thesis investigates the role of carrier transport for the absorption and emission of light in semiconductors with band gap fluctuations. The chapter develops an analytical statistical model to describe the absorption and emission spectra of such inhomogeneous semiconductors. Particular emphasis is placed on the role of the length-scale of the band gap fluctuations. As it turns out, the crucial quantity with respect to the emission spectrum is the ratio of the charge carrier transport length and the length-scale of the band gap fluctuations. Both, absorption edge and emission peak are broadened by band gap fluctuations. Comparison with numerical simulations underlines the importance of the fluctuation length in relation to the diffusion length. The model is applied to experimental absorption and photoluminescence data of Cu(In,Ga)Se$_2$ thin films with varying gallium content. The ternary compounds CuInSe$_2$ and CuGaSe$_2$ exhibit the smallest magnitude of fluctuations with standard deviations in the range of $20-40 \meV$. The fact that the quaternary compounds show standard deviations of up to $65 \meV$ points to alloy disorder as one possible source of band gap fluctuations. All observed fluctuations occur on a very small length scale that is at least ten times smaller than the electron diffusion length of approximately $1 \mum$.Item Open Access Optische Messsysteme und Ein-Sensor-Bildgebungsverfahren für Biosensoren(2024) Berner, Marcel; Werner, Jürgen H. (Prof. Dr. rer. nat. habil.)Die vorliegende Arbeit präsentiert die Entwicklung mehrerer Messsysteme und -verfahren für optische Biosensoranwendungen. Der erste Teil dieser Arbeit entwirft eine universelle experimentelle Plattform für die Erprobung neuer optischer Biosensorkonzepte nach dem Prinzip der laserinduzierten Fluoreszenz (LIF). Die Plattform unterstützt das europäische Forschungsprojekt Nanodem bei der Entwicklung eines portablen Point-of-Care-Testing-Gerätes (PoCT) zur Live-Überwachung von Immunsuppressivakonzentrationen im Blut von Transplantationspatienten unmittelbar am Patientenbett. Das in dieser Arbeit entwickelte Plattformkonzept umfasst die optoelektronische Fluoreszenzanregung und -detektion, optische Filtersysteme, den fluoreszenten Farbstoff, das Materialsystem der Transducerchips, das Mikrofluidiksystem sowie die Automatisierung der Ablaufsteuerung. Der Ausgangspunkt der Entwicklung ist die Herleitung eines allgemeinen physikalischen Modells für LIF-Systeme, an dem sich die Konstruktion der Plattform orientiert. Das in Kooperation mit der Eberhard Karls Universität Tübingen entworfene Transducerchipkonzept auf der Basis lasergeschnittener Klebebänder gestattet eine hohe Flexibilität bezüglich der Geometrie und des Aufbaus der Transducerchips und unterstützt den Technologietransfer akademischer Forschungsergebnisse in die industrielle Fertigung. Die entworfenen Photodetektorarrays aus amorphem Silizium lassen sich dank leicht adaptierbarer Herstellungsprozesse kosteneffizient auf beliebige Biosensorgeometrien anpassen. Die erreichte spezifische Detektivität D* = 11 × 10^12 Jones der Detektoren liegt dabei auf Augenhöhe mit der von State-of-the-Art-Detektoren aus kristallinem Material. Die erzielte Detektionsgrenze von c_{LOD,exp} = 26 nmol/l. Weiter bestätigen die experimentellen Messdaten das aufgestellte physikalische Modell. Der zweite Teil dieser Arbeit zeigt ein neues optisches Verfahren zur ortsaufgelösten Messung, das eine Vielzahl von Bildpunkten simultan mit nur einem einzigen optischen Sensor beobachtet. Das Verfahren nutzt hierzu ortsaufgelöste Lichtmodulatoren (Spatial Light Modulators - SLMs), um eine ortsabhängige optische Modulation zu erzeugen. Die erzeugten optischen Trägersignale gestatten die Zuordnung der als Summensignal empfangenen Signale zu ihren Ursprungspunkten. Der sogenannte Fourier Spotter macht sich dabei die mathematischen Eigenschaften der Fourier-Transformation zunutze. Durch die Anwendung zueinander phasenverschobener Modulationssignale gestattet der Fourier Spotter zudem die unmittelbare Messung von Helligkeitsdifferenzen zwischen unterschiedlichen Beobachtungspunkten. Dieses differentielle optische Messprinzip ist der Kern eines bereits erteilten Patents des Autors mit der Universität Stuttgart. Das neuartige optische Messprinzip eignet sich für die Integration in optische Biosensor-Verfahren, wie etwa die Einwellenlängenreflektometrie (engl. Single Color Reflectometry - SCORE), welche derzeit noch auf teure Spezialkameras angewiesen sind. Herkömmliche Kamerasysteme erzeugen hohe Datenmengen, deren Auswertung erhebliche Rechenleistung in Anspruch nimmt und damit der Weiterentwicklung hin zu miniaturisierten, portablen Biosensorplattformen entgegensteht. Die vorliegende Arbeit präsentiert einen erfolgreichen experimentellen Machbarkeitsnachweis des Fourier Imagers anhand von Helligkeitsdifferenzmessungen an einem SCORE-Aufbau. Eine zukünftige Erweiterung des Fourier Spotters um ein Zeilenspektrometer erlaubt neben der ortsaufgelösten Beobachtung auch eine simultane Erfassung der optischen Spektren jedes einzelnen beobachteten Punktes. Durch diese hyperspektrale Erweiterung wird die erstmalige Umsetzung einer auf der reflektometrischen Interferenzspektroskopie (RIfS) basierenden mehrkanaligen optischen Biosensorplattform möglich. Der dritte Teil dieser Arbeit verallgemeinert das Prinzip des Fourier Spotters und überführt dieses in ein Ein-Pixel-Kamera-Verfahren - das AM-FDM Imaging (engl. Amplitude Modulated Frequency Division Multiplexing). Das AM-FDM Imaging basiert auf der Anwendung von Näherungsverfahren, die ein Übersprechen zwischen den Trägersignalen minimieren. Das aufgestellte systemtheoretische Modell des AM-FDM Imaging umfasst auch das Fourier Spotting und erlaubt den Vergleich mit Rasterscans sowie bereits bekannten Ein-Pixel-Kamera-Verfahren wie dem Hadamard Imaging. Ist das Signal-zu-Rausch-Verhältnis durch das Rauschen des Detektorsystems begrenzt, so erreicht das AM-FDM Imaging einen sogenannten Multiplexgewinn amult = O(M) in der Größenordnung der Anzahl simultan beobachteter Bildpunkte M. Mit den derzeit eingesetzten Näherungsverfahren erreicht das AM-FDM Imaging hinsichtlich des Signal-zu-Rausch-Verhältnisses, der Anzahl simultan beobachtbarer Bildpunkte und der erzielbaren Bildwiederholrate nicht die Leistungsfähigkeit des bei Ein-Pixel-Imaging-Verfahren vorherrschenden Hadamard Imagings. Die in dieser Arbeit diskutierten Verwandtschaftsverhältnisse des AM-FDM Imagings zu anderen bekannten Ein-Pixel-Kamera-Verfahren legen jedoch die Vermutung nahe, dass ein bisher unbekanntes Näherungsverfahren existiert, das das AM-FDM Imaging mit dem Hadamard Imaging gleichstellt. Die Ergebnisse des systemtheoretischen Modells wurden mittels Simulation in Matlab bestätigt und gelten auch für den Fourier Spotter. Damit zeigen die Ergebnisse auf, dass im SCORE-Anwendungsfall eine Modulation nach dem Prinzip des Hadamard Imagings vorteilhafter ist. Das erteilte Patent zum optisch differentiellen Messverfahren schließt auch eine differentielle Variante des Hadamard Imagings mit ein. Gegenüber der Differenzwertbestimmung aus gemessenen Absolutwerten verdoppelt das differentielle Messverfahren wahlweise das Signal-zu-Rauschleistungs-Verhältnis oder die Bildwiederholrate des Hadamard Imagings.Item Open Access Quantifizierende Elektrolumineszenz für Silizium-Solarzellen und -module(2019) Kropp, Timo; Werner, Jürgen H. (Prof. Dr. rer. nat. habil.)Diese Arbeit präsentiert zwei neue Messmethoden auf Basis der Elektrolumineszenz zur Charakterisierung von Solarzellen und -modulen. Beide Methoden nutzen die Strominjektion, um ein Lumineszenzbild zu quantifizieren. Der Unterschied zwischen den Methoden besteht in der zeitlichen Variation der Strominjektion bzw. Stromextraktion. Bei der gepulsten Strominjektion sowie -extraktion hängt der zeitliche Verlauf der resultierenden Elektrolumineszenz von der effektiven Ladungsträgerlebensdauer in der untersuchten Solarzelle ab. Die eingeführte analytische Beschreibung der normierten periodischen Intensitätsdifferenz zwischen zwei unterschiedlich strommodulierten Lumineszenzbildern ist unabhängig von der Belichtungszeit der Bildaufnahme. Bei der zeitlich konstanten Strominjektion ist die Amplitude der Lumineszenzintensität zusätzlich durch den lokalen Serienwiderstand bzw. Parallelwiderstand einer Solarzelle bestimmt. Die zweite entwickelte Methode dieser Arbeit ist in der Lage, Leistungsverluste von Photovoltaikmodulen durch mechanische Defekte sowie potentialinduzierte Degradation anhand eines einzelnen Lumineszenzbildes quantitativ zu bewerten. Der durch einen Defekt hervorgerufene Leistungsverlust gegenüber der ursprünglich nach dem Datenblatt verfügbaren Leistung wird präzise vorhergesagt.Item Open Access Transfersolarzellen aus monokristallinem Dünnschichtsilicium(2004) Rinke, Titus J.; Werner, Jürgen H. (Prof. Dr. rer. nat. habil.)Die vorliegende Arbeit untersucht die Technologie zum Transfer einkristalliner Si-Schichten für Bauelementanwendungen. Im Vordergrund steht dabei die Verwendung der transferierten Schichten als Absorber in monokristallinen Si-Dünnschichtsolarzellen auf Glas. Die im Rahmen dieser Arbeit entwickelte Technologie kombiniert die hohe Qualität von einkristallinem Silicium mit der Material sparenden Dünnschichttechnik, um hohe Konversionswirkungsgrade bei geringem Materialverbrauch zu ermöglichen. Der zugrunde liegende Kreisprozess stellt auf einem einkristallinen Si-Wafer einen epitaktischen, monokristallinen Si-Film her, der nach der Prozessierung der Bauelemente auf ein Fremdsubstrat übertragen wird, wodurch der Si-Wafer für weitere Prozesszyklen zur Verfügung steht. Elektrochemisch hergestelltes poröses Si bildet nach einer Kristallisation bei Temperaturen um T = 1000 °C einen Si-Film mit eingeschlossenen Hohlräumen. Wegen der Anwesenheit von Hohlräumen in dem ansonsten einkristallinen Material, ähnlich dem Aussehen eines Schweizer Käses, nennen wir dieses Material „quasi-monokristallines Silicium“, kurz QMS. Die Morphologie des QMS lässt sich durch die Herstellungsparameter in einem weiten Bereich einstellen. Eine Bor-Dotierung im Bereich NA = 10^17 cm-3 führt zu einer hohen Porosität und nach der Kristallisation zu schlauchförmigen Hohlräumen einer typischen Größe von d = 1 ... 2 µm. Bei einer Bor-Dotierung im Bereich NA = 10^19 cm-3 liegt die Porosität, bei einer Ätzstromdichte von Jätz = 12 mA cm-2, bei ca. P = 20% und bildet nach der Kristallisation Hohlräume mit einer Größe von d = 50 ... 100 nm. Stellt man sehr dünne (d < 1 µm), poröse Si-Filme her, so ist deren Struktur nach der Kristallisation durch Ausdiffusion von Hohlräumen weitgehend kompakt. Die Hohlräume in den QMS-Schichten sind in Abhängigkeit ihrer Größe facettiert. Die inneren Oberflächen von kleinen Hohlräumen bestehen aus (111)- und etwas verrundeten (100)-Facetten und bilden die Form eines Tetrakaidekahedrons, eines Körpers mit 14 Flächen. Bei größeren Hohlräumen findet man mit der Transmissionselektronenmikroskopie neben (111)- und (100)- Facetten zusätzlich höherindizierte Facetten. Die Porosität des porösen Siliciums lässt sich durch die Ätzstromdichte einstellen, wodurch die Herstellung einer porösen Doppelschicht mit einer oberflächennahen niederporösen und einer vergrabenen hochporösen Schicht möglich ist. Bei der Kristallisation bildet sich durch morphologische Umordnung aus dieser Doppelschicht ein QMS-Film auf einer - mechanisch schwachen - sogenannten Trennschicht. Chemische Gasphasenabscheidung (CVD) bei T = 1100 °C erzeugt unter optimierten Bedingungen auf dem QMS-Film eine Epitaxieschicht mit einer Defektdichte von weniger als nDef = 1000 cm-2. Die geringe Defektdichte in den Epitaxieschichten ermöglicht nach der Herstellung und dem Transfer von Solarzellen einen Konversionswirkungsgrad von bis zu eta = 15.3 %. Dieser Wirkungsgrad ist der weltweit höchste, der mit Solarzellen auf der Basis von kristallinem Dünnschichtsilicium auf Glas bisher erreicht wurde. Diese Solarzellen haben eine Gesamtdicke von d = 24.5 µm und sind in einer Superstrat-Konfiguration unter einem Glassubstrat angeordnet. Eine neuartige Modultechnologie ermöglicht eine einfache, integrierte Serienverschaltung durch selbstjustierende, schräggerichtete Deposition. Mit dieser Modultechnologie lassen sich Dünnschichtsilicium-Transfersolarzellen zu Solarmodulen verschalten. Die ersten nach dieser Methode hergestellten Zwei-Zellen-Mini-Module zeigen einen Füllfaktor von FF = 75.3% und eine Leerlaufspannung von V0C = 1169 mV. Diese Verschaltungstechnik ist nicht nur vielversprechend für transferierte Solarzellen, sondern eignet sich auch zur integrierten Serienverschaltung von Solarzellen auf der Basis von Cu(In,Ga)Se2. Diese Arbeit vertieft das Verständnis der Vorgänge bei der Kristallisation von porösem Silicium und bietet erstmals eine grundlegende Evaluierung des Potentials von transferierbaren, einkristallinen Silicium-Dünnfilmen. Eine umfassende Untersuchung der strukturellen und technologischen Möglichkeiten hat zur Herstellung von Dünnschichtsolarzellen geführt, deren Wirkungsgrad mit ca. 20 mal dickeren Solarzellen aus heutigen Produktionslinien vergleichbar ist.