Browsing by Author "Werz, Martin"
Now showing 1 - 12 of 12
- Results Per Page
- Sort Options
Item Open Access Abschlussbericht zum Projekt "Ressourcenschonende Mischschweißverbindungen für Hochleistungs-Leichtbauverbunde"(Stuttgart : Institut für Materialprüfung, Werkstoffkunde und Festigkeitslehre (IMWF) der Universität Stuttgart, 2018) Panzer, Florian; Werz, Martin; Nguyen, Phuc Lanh; Schneider, Matthias; Weihe, Stefan; Liewald, MathiasIm Rahmen des Projektes wurde das Rührreibschweißen als ressourceneffizientes und umweltfreundliches Fertigungsverfahren zur Herstellung von beanspruchungs- und gewichtsoptimierten Automobilbauteilen erforscht. Dabei galt es, Aluminium und Stahl in verschiedenen Dicken durch Rührreibschweißen zu fügen und durch anschließendes Umformen zum End- bzw. Zwischenprodukt umzuformen. Die auf die Festigkeiten der Werkstoffe angepassten Blechdicken führen zu einer optimalen Ausnutzung der Werkstoffe, da an jeder Stelle der Werkstoff verwendet werden kann, der die lokalen Anforderungen am besten erfüllt. Durch den Einsatz dieser sogenannten Tailor Welded Blanks sinkt der Werkstoffverbrauch insgesamt und es können auf Leichtbau optimierte Bauteile hergestellt werden. Im Rahmen des Projektes wurden verschiedene Aluminium- und Stahlgüten in unterschiedlichen Dicken durch Rührreibschweißen gefügt und die Festigkeits- sowie Umformeigenschaften ermittelt. Da die Einhaltung von engen Toleranzen mit hohen Kosten in der Fertigung einhergeht, wurden die für den Prozess notwendigen Toleranzen untersucht, Lösungen zum Umgang mit diesen Toleranzen erarbeitet und Anforderungen an Anlagen zur Produktion von Tailor Welded Blanks identifiziert. Zudem wurde das Umformen von Blechen mit unterschiedlichen Materialen und Blechdicken untersucht. Darüber hinaus wurde eine Reihe weiterer Themen wie das Verschweißen von Gusswerkstoffen und Wärmebehandlungsstrategien beleuchtet. Abschließend wurden Demonstratorbauteile in Form von Tailor Welded Blanks in Aluminium-Stahl- Mischbauweise durch Rührreibschweißen und anschließendes Umformen gefertigt.Item Open Access Dilution ratio and the resulting composition profile in dissimilar laser powder bed fusion of AlSi10Mg and Al99.8(2020) Böhm, Constantin; Werz, Martin; Weihe, StefanItem Open Access Effect of weld length on strength, fatigue behaviour and microstructure of intersecting stitch-friction stir welded AA 6016-T4 sheets(2023) Walz, Dominik; Göbel, Robin; Werz, Martin; Weihe, StefanFriction stir welding is a promising joining process for boosting lightweight construction in the industrial and automotive sector by enabling the weldability of high-strength aluminum alloys. However, the high process forces usually result in large and heavy equipment for this joining method, which conflicts with flexible application. In order to circumvent this issue, a friction stir welding gun has been developed which is capable of producing short stitch welds-either stand-alone as an alternative to spot welds or merging into each other appearing like a conventional friction stir weld. In this study, the influence of the stitch seam length on the strength properties of intersecting friction stir welds is investigated, and the weld is characterized. For this purpose, EN AW-6016 T4 sheets were welded in butt joint configuration with varying stitch lengths between 2 and 15 mm. Both the static and dynamic strength properties were investigated, and hardness and temperature measurements were carried out. The results show a scalability of the tensile strength as well as the fatigue strength over the stitch seam length, while the substitute proof strength is not affected. Hereby, the tensile strength reached up 80% of the base materials tensile strength with the chosen parameter setup. Likewise, the stitch weld length influences the hardness characteristics of the welds in the transition area.Item Open Access Experimentelle und numerische Untersuchungen des Rührreibschweißens von Aluminium- und Aluminium-Stahl-Verbindungen zur Verbesserung der mechanischen Eigenschaften(Stuttgart : Materialprüfungsanstalt (MPA), Universität Stuttgart, 2020) Werz, Martin; Weihe, Stefan (Prof. Dr.-Ing.)Die Reduktion des Fahrzeuggewichtes durch Leichtbau stellt eine effektive Möglichkeit zur Vergrößerung der Reichweite von E-Mobilen sowie zur Verringerung der Emissionen bei konventionellen Kraftfahrzeugen dar. Sowohl beim konstruktiven als auch beim Werkstoff-Leichtbau kommt dabei der Fügetechnologie eine entscheidende Rolle zu. Das hochfeste schweißtechnische Fügen niederlegierter ferritischer Stähle, wie sie im Karosseriebau eingesetzt werden, wird heute mit verschiedenen Schmelz- und Pressschweißverfahren wie z. B. dem Laser- oder Widerstandpunktschweißen beherrscht. Beim Verschweißen von hochfesten Aluminiumwerkstoffen mit heute gängigen Schweißprozessen kann es jedoch an der Fügestelle zu signifikanten Einbußen der Festigkeit kommen. Die festigkeitssteigernden Mechanismen im Aluminium werden durch die hohe Wärmeeinbringung beim Aufschmelzen reduziert bzw. gehen verloren. Bei der mit der Erstarrung einhergehenden Gefügeneubildung können diese Mechanismen nicht mehr oder nur noch in geringerem Maße aktiviert werden. Darüber hinaus stellen, je nach chemischer Zusammensetzung der Aluminiumlegierung, Heißrisse sowie im speziellen Fall des Widerstandpunktschweißens der hohe Elektrodenverschleiß generelle Probleme dar. Um diese mit dem Aufschmelzen bzw. Erstarren der hochfesten Aluminiumlegierungen zusammenhängenden Probleme zu lösen bzw. vielmehr zu umgehen, wurde 1991 am The Welding Institute (GB) das Rührreibschweißen entwickelt. Dabei handelt es sich um ein spezielles Pressschweißverfahren, bei dem der Werkstoff vollständig in fester Phase verbleibt. Im Gegensatz zu herkömmlichen Reibschweißprozessen, wie z. B. dem Linear- oder Rotationsreibschweißen, wird dabei allerdings keine Relativbewegung zwischen den zu fügenden Bauteilen oder Werkstoffen benötigt. Vielmehr wird die Reibarbeit durch ein rotierendes Schweißwerkzeug eingebracht, das in den Fügespalt eingepresst und entlang desselben verfahren wird. Durch den Materialtransport um das rotierende Werkzeug bzw. dessen Pin wird die Schweißnaht hergestellt. Aufgrund dieser Besonderheit, dass der Werkstoff in fester Phase verbleibt, sind neben hochfesten Aluminiumverbindungen auch Mischverbindungen möglich. Solche Mischverbindungen sind schmelzmetallurgisch nicht oder nur eingeschränkt möglich. Hierzu zählen insbesondere stoffschlüssige Aluminium-Stahl-Mischverbindungen, die für den ökonomischen Hybrid-Leichtbau der Karosserie von besonderem Interesse sind. Die Festigkeit solcher Verbindungen kann allerdings durch spröde intermetallische Verbindungen stark begrenzt werden. Dies stellt eine der technologischen Grundherausforderungen dieser Arbeit dar. Daher soll diese Arbeit dazu beitragen, den Rührreibschweißprozess als industrielles Fertigungsverfahren für hochfeste Aluminium- und Aluminium-Stahl-Hybrid-Verbindungen, besonders für den Karosseriebau mit seinen spezifischen Anforderungen, zu etablieren. Um den Prozess besser zu verstehen und die Auswirkungen auf die resultierenden Festigkeitseigenschaften quantifizieren zu können, werden in dieser Arbeit vorrangig experimentelle, aber auch numerische Ansätze entwickelt. Des Weiteren ist es das Ziel, die gewonnenen Erkenntnisse in Form von Prozesserweiterungen, -verbesserungen oder -abwandlungen für industrielle Prozesse nutzbar zu machen. Da die in diesem Zusammenhang entwickelten Lösungen teilweise deutlich über den aktuellen Stand der Technik hinausgehen, wurden während dieser Arbeit eine hohe Zahl an Erfindungen mit nachfolgenden Patentanmeldungen gemacht (siehe Tabelle 8.1). Grundlage des ersten Teils der Arbeit ist die Entwicklung geometrisch neuartiger Schweißnahtkonfigurationen samt zugehörigem Herstellungsprozess, um Aluminium- und Stahlbleche unterschiedlichster Dicke hochfest fügen zu können. Hierbei wird explizit auf die Anforderungen für eine spätere Nutzung der Mischverbindungen in hybriden Tailor Welded Blanks (TWB) eingegangen. Hierzu gehört besonders die Anforderung, die Schweißnaht als Stumpfstoß und einseitig eben auszuführen. Ein weiteres Erfordernis besteht darin, dass die Tailor Welded Blanks in Tiefziehprozessen umformbar sind und dabei nicht im Bereich der Schweißnaht aufreißen. Zwei unterschiedliche Lösungen wurden hierzu entwickelt: Bei der ersten Ausführung wird das höherfeste, aber dünnere Stahlblech entlang der Schweißnaht umgebördelt, um so eine Vergrößerung des Anbindungsquerschnittes zu realisieren. Da dies einen zusätzlichen Bearbeitungsschritt erfordert und insbesondere hochfeste Stähle nicht rissfrei aufeinander umgelegt werden können, wurde im Verlauf dieser Arbeit eine zweite Lösung entwickelt. Hierbei wird ein Rührreibschweißwerkzeug mit abgestuftem Schweißstift verwendet, um eine kombinierte Überlapp- und Stumpfstoßverbindung herzustellen. Dabei führt der untere zylindrische Abschnitt des Schweißstiftes eine Stumpfverschweißung zwischen Stahl und Aluminium aus. Der stirnseitige Abschnitt der Stufe des Schweißstifts erzeugt gleichzeitig eine Überlappverbindung zwischen den beiden Werkstoffen. Der Vergleich beider entwickelter Lösungen mit dem Stand der Technik wurde anhand der automobiltypischen Werkstoffkombination EN AW-6016-T4 2,0 mm (Aluminium-Magnesium-Silizium-Legierung) / HC340LAD 1,0 mm (mikrolegierter Feinkornstahl) durchgeführt. Dabei zeigt sich besonders in den Schwingfestigkeitsuntersuchungen eine signifikante Überlegenheit der kombinierten Stumpf- und Überlappverbindung gegenüber dem Stand der Technik. Kombinationen von Aluminium und Stahl, bei denen das Produkt von Blechdicke und Festigkeit seitens des Aluminiums etwas größer ist als das des Stahlblechs, zeigen in Napfziehversuchen Umformergebnisse ohne Aufreißen der Schweißnaht. Kombinationen, bei denen das Produkt von Blechdicke und Festigkeit seitens des Stahls größer war, zeigen auch nach Optimierung der Schweißparameter eine signifikante Dehnungslokalisierung mit nachfolgender Rissbildung in der WEZ des Aluminiums. Für diesen Fall der Dehnungslokalisierung in der Schweißnaht wird für aushärtbare Legierungen, basierend auf dem Aluminium-Magnesium-Silizium-Dreistoffsystem (6000er), eine neuartige Wärmebehandlungsmethode entwickelt. Ausgangspunkt dafür sind systematische Untersuchungen des Auslagerungsverhaltens des Grundwerkstoffs bei unterschiedlichen Auslagerungstemperaturen, -dauern und Zwischenauslagerungszeiten. Ferner werden die Grenzen für das Auftreten von Rekristallisation für den Grundwerkstoff, vorgedehnten Werkstoff und gleichartigen Schweißverbindungen experimentell untersucht. Überdies werden sowohl das Wachstum der intermetallischen Phasen in Glühversuchen von Aluminium-Stahl-Rührreibschweißverbindungen als auch die Auswirkung auf die Verbindungsfestigkeit untersucht. Es zeigt sich, dass der dickenabhängige, festigkeitslimitierende Effekt dieser Grenzschicht sehr gut mit der von Weibull entwickelten Theorie erklärt werden kann. Die quantitative Beschreibung dieses Zusammenhangs ergibt, dass herkömmliche Lösungsglühprozesse, aufgrund der zur Erwärmung der Bauteile benötigten Zeiten, nicht zielführend sind. Die neu entwickelte Wärmebehandlungsmethode nutzt daher den Schweißprozess selbst als lokalen Lösungsglühprozess. Grundvoraussetzung hierfür ist, dass der Schweißprozess ausreichend schnell ausgeführt wird, sodass es währenddessen nicht zu einer Überalterung der festigkeitssteigernden Ausscheidungen kommt. Durch die deutlich längere, logistisch bedingte Raumtemperatur-Zwischenauslagerung des Grundwerkstoffs im Vergleich zur Schweißnaht spricht dieser deutlich langsamer auf eine Warmauslagerung bei vergleichsweise niederen Temperaturen an. Dies bedeutet, dass mit dieser Methode die Festigkeit der Schweißnaht durch Warmauslagerung gesteigert werden kann, ohne dass der Grundwerkstoff eine signifikante Festigkeitssteigerung erfährt. Für die Legierung EN AW-6016 werden Prozessdiagramme zur Ermittlung der minimal notwendigen Warmauslagerungsdauer entwickelt. Die Diagramme berücksichtigen dabei die Auslagerungstemperatur, die Dauer der Kaltauslagerung der Schweißnaht sowie den Nahtunterhang der Rührreibschweißnähte. Die Diagramme werden mittels gleichartiger Aluminium-Schweißnähte und Aluminium-Stahl-Mischverbindungen validiert. Der dritte und abschließende Teil dieser Arbeit beschäftigt sich mit der numerischen Modellierung des Rührreibschweißprozesses, um zukünftig numerische Prozessoptimierungen zur weiteren Steigerung der Festigkeit durchführen zu können. Anhand einer Literaturrecherche wird gezeigt, dass ein wesentliches Steigerungspotential hinsichtlich der Aussagekraft der Prozesssimulationen in den hierzu verwendeten Materialmodellen liegt. Hierzu werden die bislang in der Literatur bekannten Werkstoffmodelle daraufhin analysiert, wie gut diese die Fließspannung über die breiten Dehnraten-, Temperatur-, und Dehnungsbereiche abbilden, die beim Rührreibschweißen auftreten können. Da bekannte thermomechanische Werk-stoffmodelle für andere Anwendungen wie z. B. ballistische Impacts oder Warmumformung entwickelt wurden, zeigt sich die Notwendigkeit für eine Neuentwicklung. Bei dieser Neuentwicklung wird bewusst ausschließlich auf Effekte eingegangen, die bereits in der Literatur bekannt sind und die für den Prozessbereich des Rührreibschweißens als relevant einzustufen sind. Das neu entwickelte Modell wird unter Berücksichtigung verschiedener Annahmen zum Werkstoffverhalten bei Temperaturwechseln als User-Subroutine für Abaqus/Explicit implementiert. Zur Bestimmung der benötigten Modellparameter werden mit einer Gleeble 2000 bei einem breiten Temperatur- und Dehnratenspektrum für die Werkstoffe Al 99,5, EN AW-5182, AlSi10Mg und EN AW-6016 Druckversuche durchgeführt. Das Materialmodell reduziert den Modellfehler bei der Anpassung der Versuchsergebnisse gegenüber bereits etablierten Materialmodellen erheblich. Hierdurch wird die Aussagekraft von Prozesssimulationen, die dieses Materialmodell gegenüber dem etablierten Johnson-Cook-Modell verwenden, erheblich gesteigert.Item Open Access Feasibility study on additive manufacturing of ferritic steels to meet mechanical properties of safety relevant forged parts(2022) Mally, Linda; Werz, Martin; Weihe, StefanAdditive manufacturing processes such as selective laser melting are rapidly gaining a foothold in safety-relevant areas of application such as powerplants or nuclear facilities. Special requirements apply to these applications. A certain material behavior must be guaranteed and the material must be approved for these applications. One of the biggest challenges here is the transfer of these already approved materials from conventional manufacturing processes to additive manufacturing. Ferritic steels that have been processed conventionally by forging, welding, casting, and bending are widely used in safety-relevant applications such as reactor pressure vessels, steam generators, valves, and piping. However, the use of ferritic steels for AM has been relatively little explored. In search of new materials for the SLM process, it is assumed that materials with good weldability are also additively processible. Therefore, the processability with SLM, the process behavior, and the achievable material properties of the weldable ferritic material 22NiMoCr3-7, which is currently used in nuclear facilities, are investigated. The material properties achieved in the SLM are compared with the conventionally forged material as it is used in state-of-the-art pressure water reactors. This study shows that the ferritic-bainitic steel 22NiMoCr3-7 is suitable for processing with SLM. Suitable process parameters were found with which density values > 99% were achieved. For the comparison of the two materials in this study, the microstructure, hardness values, and tensile strength were compared. By means of a specially adapted heat treatment method, the material properties of the printed material could be approximated to those of the original block material. In particular, the cooling medium/cooling method was adapted and the cooling rate reduced. The targeted ferritic-bainitic microstructure was achieved by this heat treatment. The main difference found between the two materials relates to the grain sizes present. For the forged material, the grain size distribution varies between very fine and slightly coarse grains. The grain size distribution in the printed material is more uniform and the grains are smaller overall. In general, it was difficult and only minimal possible to induce grain growth. As a result, the hardness values of the printed material are also slightly higher. The tensile strength could be approximated to that of the reference material up to 60 MPa. The approximation of the mechanical-technological properties is therefore deemed to be adequate.Item Open Access Friction stir welded and deep drawn multi-material tailor welded blanks(2019) Panzer, Florian; Schneider, Matthias; Werz, Martin; Weihe, StefanThe ever increasing demand for more resource-efficient and safer vehicles in today’s automotive industry makes lightweight construction techniques necessary. However, overcoming contradicting requirements arising from lightweight design and safety remains a challenging task. The extent to which lightweight measures can be applied in order to save fuel, heavily depends on the fact that rising safety requirements have to be met by increasing strength of parts. This contradicting demand for parts with high strength and low weight leads to the development of new production technologies. One example, regarding car body components, is the tailor welded blank (TWB) technology. In tailor welded blanks, materials and thicknesses are locally adapted to meet the needed strength and strain properties while keeping the weight as low as possible. While tailor welded blanks consisting of similar materials with different thicknesses are already used in vehicles, the use of TWBs with dissimilar materials, e.g. steel and aluminum, is still in development due to the problems in joining dissimilar materials. Especially when manufacturing parts made of TWBs through joining and subsequent deep drawing, the joint needs to have very good strength properties in order not to fail during forming. One way to overcome these joining difficulties is friction stir welding. In this paper, a methodology is presented to produce multi-material tailor welded blanks with varying thicknesses through friction stir welding (FSW) and deep drawing in a subsequent step. A newly developed FSW joint configuration is used to weld steel sheets in 1 mm thickness to 2 mm thick aluminum sheets. A welding parameter study is conducted to investigate the influence of the process parameters on the joint quality. Tensile and Nakajima tests show that the joint strength, obtained with optimal process parameters, exceeds the strength of the steel base material. Thus, failure occurs in the steel, whereas the joint remains intact. The friction stir welded blanks were furthermore deep drawn. Two different tool approaches were tested to compensate the different sheet thicknesses during the forming process. Using the more suitable approach, blanks were deep drawn with three different punch geometries to show the potential of friction stir welding for the manufacturing of multi-material tailor welded blanks.Item Open Access Investigation of tool degradation during friction stir welding of hybrid aluminum-steel sheets in a combined butt and overlap joint(2024) Göbel, Robin; Schwertel, Stefanie; Weihe, Stefan; Werz, MartinFriction stir welding, as a solid-state welding technique, is especially suitable for effectively joining high-strength aluminum alloys, as well as for multi-material welds. This research investigates the friction stir welding of thin aluminum and steel sheets, an essential process in the production of hybrid tailor-welded blanks employed in deep drawing applications. Despite its proven advantages, the welding process exhibits variable outcomes concerning formability and joint strength when utilizing an H13 welding tool. To better understand these inconsistencies, multiple welds were performed in this study, joining 1 mm thick steel to 2 mm thick aluminum sheets, with a cumulative length of 7.65 m. The accumulation of material on the welding tool was documented through 3D scanning and weighing. The integrity of the resulting weld seam was analyzed through metallographic sections and X-ray imaging. It was found that the adhering material built up continuously around the tool pin over several welds totaling between 1.5 m and 2.5 m before ultimately detaching. This accretion of material notably affected the welding process, resulting in increased intermixing of steel particles within the aluminum matrix. This research provides detailed insights into the dynamics of friction stir welding in multi-material welds, particularly in the context of tool material interaction and its impact on weld quality.Item Open Access A physically based material model for the simulation of friction stir welding(2020) Panzer, Florian; Shishova, Elizaveta; Werz, Martin; Weihe, Stefan; Eberhard, Peter; Schmauder, SiegfriedA physically based material model, taking into account the interdependence of material microstructure and yield strength, is presented for an Al 5182 series aluminum alloy for the simulation of friction stir welding using continuum mechanics approaches. A microstructure evolution equation considering dislocation density and grain size is used in conjunction with a description of yield stress. In order to fit experimental stress-strain curves, obtained from compression tests at various strain rates and temperatures, phenomenological relationships are developed for some of the model parameters. The material model is implemented in smoothed particle hydrodynamic research code as well as in the commercial finite element code Abaqus. Simulations for various strain rates and temperatures were performed and compared with experimental results as well as between the two discretization methods in order to verify the material model and the implementation. Simulations provide not only an accurate approximation of stress based on temperature, strain rate, and strain but also an improved insight into the microstructural evolution of the material.Item Open Access Practical approach to eliminate solidification cracks by supplementing AlMg4.5Mn0.7 with AlSi10Mg powder in laser powder bed fusion(2022) Böhm, Constantin; Werz, Martin; Weihe, StefanItem Open Access Residual stress formation mechanisms in laser powder bed fusion : a numerical evaluation(2023) Kaess, Moritz; Werz, Martin; Weihe, StefanAdditive manufacturing methods, such as the laser powder bed fusion, do not need any special tool or casting mold. This enables the fast realization of complex and individual geometries with integrated functions. However, the local heat input during the manufacturing process often leads to residual stresses and distortion. This in turn causes poor quality, scrap parts or can even terminate a job prematurely if the powder recoating mechanism collides with a distorted part during the process. This study investigates the generation mechanisms of residual stresses and distortion during laser powder bed fusion (LPBF) of stainless steel 316L in order to reduce these effects and thus contribute to improved process safety and efficiency. Therefore, numerical investigations with a finite element model on the scale of a few melt tracks and layers serve to develop a detailed understanding of the mechanisms during production. The work includes an investigation of the build plate temperature, the laser power and speed and the layer thickness. The results show a strong dependency on the build plate preheating and energy per unit length. A higher build plate temperature and a reduction of the energy per unit length both lead to lower residual stresses.Item Open Access Reversible inter-particle bonding in SPH for improved simulation of friction stir welding(2022) Shishova, Elizaveta; Panzer, Florian; Werz, Martin; Eberhard, PeterFriction stir welding (FSW) is a complex joining process which is governed by multiple intertwined physical phenomena. Besides friction, inelastic heat generation, and heat conduction, it involves high plastic deformations, resulting in a need for a numerical method being able to handle all these. Such a scheme is smoothed particle hydrodynamics (SPH), which is a mesh-free computational technique. Absence of a fixed mesh results in the ability of the method to deal with another challenge of friction stir welding, a coalescence of initially separate workpieces into one due to bonding mechanisms. The background of this phenomenon is a transition from contact between two pieces to one continuum due to enormous changes in several material condition, such as temperature, pressure, strain, and strain rate. This work deals with a new development related to bonding, which will provide deeper understanding about the physical weld formation during FSW. The SPH framework must be extended to consider this bonding mechanism. This involves the bonding criterion definition, the interaction type change, and the SPH-SPH contact formulation. Then, the implementation is tested for two different examples, a compression test and FSW.Item Open Access Theoretical-numerical investigation of a new approach to reconstruct the temperature field in PBF-LB/M using multispectral process monitoring(2024) May, Lisa; Werz, MartinThe monitoring of additive manufacturing processes such as powder bed fusion enables the detection of several process quantities important to the quality of the built part. In this context, radiation-based monitoring techniques have been used to obtain information about the melt pool and the general temperature distribution on the surface of the powder bed. High temporal and spatial resolution have been achieved at the cost of large storage requirements. This contribution aims to offer an alternative strategy of gaining information about the powder bed’s temperature field with sufficient resolution but with an economical amount of data. The investigated measurement setup uses a spectrometer to detect the spectral radiation intensities emitted by an area enclosing the melt pool and part of its surroundings. An analytical description of this process is presented, which shows that the measured spectral entities can be reconstructed by the Ritz method. It is also shown that the corresponding weighting factors can be physically interpreted as subdomains of constant temperature within the measurement area. Two different test cases are numerically analyzed, showing that the methodology allows for an approximation of the melt pool size while further assumptions remain necessary to reconstruct the actual temperature distribution.