Browsing by Author "Widmann, Matthias"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Optimizing NV magnetometry for magnetoneurography and magnetomyography applications(2023) Zhang, Chen; Zhang, Jixing; Widmann, Matthias; Benke, Magnus; Kübler, Michael; Dasari, Durga; Klotz, Thomas; Gizzi, Leonardo; Röhrle, Oliver; Brenner, Philipp; Wrachtrup, JörgMagnetometers based on color centers in diamond are setting new frontiers for sensing capabilities due to their combined extraordinary performances in sensitivity, bandwidth, dynamic range, and spatial resolution, with stable operability in a wide range of conditions ranging from room to low temperatures. This has allowed for its wide range of applications, from biology and chemical studies to industrial applications. Among the many, sensing of bio-magnetic fields from muscular and neurophysiology has been one of the most attractive applications for NV magnetometry due to its compact and proximal sensing capability. Although SQUID magnetometers and optically pumped magnetometers (OPM) have made huge progress in Magnetomyography (MMG) and Magnetoneurography (MNG), exploring the same with NV magnetometry is scant at best. Given the room temperature operability and gradiometric applications of the NV magnetometer, it could be highly sensitive in the pT/Hz-range even without magnetic shielding, bringing it close to industrial applications. The presented work here elaborates on the performance metrics of these magnetometers to the state-of-the-art techniques by analyzing the sensitivity, dynamic range, and bandwidth, and discusses the potential benefits of using NV magnetometers for MMG and MNG applications.Item Open Access Quantum-assisted distortion-free audio signal sensing(2022) Zhang, Chen; Dasari, Durga; Widmann, Matthias; Meinel, Jonas; Vorobyov, Vadim; Kapitanova, Polina; Nenasheva, Elizaveta; Nakamura, Kazuo; Sumiya, Hitoshi; Onoda, Shinobu; Isoya, Junichi; Wrachtrup, JörgQuantum sensors are known for their high sensitivity in sensing applications. However, this sensitivity often comes with severe restrictions on other parameters which are also important. Examples are that in measurements of arbitrary signals, limitation in linear dynamic range could introduce distortions in magnitude and phase of the signal. High frequency resolution is another important feature for reconstructing unknown signals. Here, we demonstrate a distortion-free quantum sensing protocol that combines a quantum phase-sensitive detection with heterodyne readout. We present theoretical and experimental investigations using nitrogen-vacancy centers in diamond, showing the capability of reconstructing audio frequency signals with an extended linear dynamic range and high frequency resolution. Melody and speech based signals are used for demonstrating the features. The methods could broaden the horizon for quantum sensors towards applications, e.g. telecommunication in challenging environment, where low-distortion measurements are required at multiple frequency bands within a limited volume.